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Audio-video synchronization in videos
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Audio-video synchronization in videos
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These errors occur when the audio and video components of a video 5 10 15 20 25 30 3 40

are not synchronized properly, leading to a poor viewing experience. e
Requires manual supervision to align audio

with the video but it is time consuming and
prone to human errors




Motivation

» An automated off-sync detector can help identify these errors and provide a more accurate
synchronization between audio and video.

» Additionally, an off-sync detector can help video creators save time and resources by
automating the process of detecting and correcting these errors.

» Some other practical applications -

1. Active speaker detection 2. Lip reading

classification
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Previous approaches

Key

layer support # filts

contrastive loss

120x120x5 13x20x1

SyncNet [Chung et al. 2016] — ConvNet
Siamese style architecture trained with a
Euclidean distance contrastive loss for off-sync
detection
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(a) Audio stream (b) Visual stream

A multi-way cross entropy loss
is used to process a batch of 1
video feature, 1 positive audio
feature and N-1 negative
features and performs multi-
class classification

Perfect Match [Chung et al. 2019]
— Introduces a 3D-Conv based
image encoder to include RGB
images from the video stream
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Previous approaches
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AVST [Chen et al. 2021] - Introduced attention to learn
correlation between longer audio and video sequences as
informative portions can be localized in a short
subsequence.

VocaliST [Kadandale et al. 2022] — Multiple
cross modal transformers thereby learning
audio-video, video-audio and hybrid
correlations




Previous approaches
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M Od E FO rmer. Modality-Preserving Embedding for Audio-Video Synchronization using Transformers
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the audio branch takes a fixed size crop from the mel-
spectrogram.

Each modality branch contains a CNN encoder to
extract intermediate representations

The above representations are concatenated with
sinusoidal positional encodings and are passed to
modality-specific transformers.
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» Unlike previous approaches,
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(a) SyncNet/PM

» We take the learned [CLS]

(b) AVST / VocaLLiST (c¢) ModEFormer - Ours

we ensure no mixing
between modalities at any
step.

token representation from
the transformer encoder
as the final embedding for
each modality.

> To enable contrastive

learning, each video
modality is paired up with a
bunch of audio samples
illustrating positive and
negative examples.
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(a) SyncNet/PM

» Unlike previous
approaches, we
ensure no mixing
between modalities
at any step.

» We take the learned
[CLS] token
representation as
the final embedding
for each modality.

» To enable contrastive
learning, each video
modality is paired up
with a bunch of audio
samples illustrating
positive and negative
examples

(b) AVST / VocaLiST (c¢) ModEFormer - Ours
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Cosine similarity to calculate
Sync score

» We calculate a sync score
and use InfoNCE loss
minimization which offers
better generalization
allowing to learn
discriminative and noise-
invariant features




Audio-Video Contrastive learning

» Push aligned audio-video latent representations closer to each other and misaligned latent representations far
apart.
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Audio-Video Contrastive learning

» Push similar (positive) latent representations closer to each » Sampling strategy -
other and dissimilar (negative) latent representations far
apart.

= Positives — Audio and video are temporally
aligned coming from the same clip.
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Experimental setup

» Datasets used — We used Lip reading
sentences (LRS) datasets

» ModEFormer training — Carried out in two
stages

e LRS2 - Contains thousands of spoken
sentences from BBC television with a
length of upto 100 characters.

e Stage 1 — Here we take a large batch size of
2000 and where each batch entry is from a

unique clip and has two corresponding

h a rd n egatlve a u d IO Sa m p I eS Set Dates # utterances # word instances Vocab
Pre-train 11/2010-06/2016 96,318 2,064,118 41,427
Train 11/2010-06/2016 45,839 329,180 17,660

. B )
Stage 2 He re We Increase the number Of Validation | 06/2016-09/2016 1,082 7,866 1,984
hard negatives and also start incorporating Test 09/2016-03/2017 1243 6.663| Loo8
easy negatives in the batch.

e LRS3 - Contains thousands of spoken
sentences from TED and TEDx videos.
We created the val set by randomly
slicing the 40% of the “Trainval”

* We develop such paradigm to obtain
benefits of large batch size from
contrastive learning (stage 1) and also

efficiently incorporate diversity in training partition.

samples for better generalization (Stage 2) Set # videos # utterances # word instances Vocab
Pre-train, 5,090 118,516 39M 51k
Trainval =~ 4,004 31,982 358k 17k
Test 412 1,321 10k 2k




Results

» We use lip-synchronization accuracy as defined by previous approaches on different input video clip
lengths to compare the performance of ModEFormer on the LRS test datasets.

Clip Length in Frames (Seconds) # of params

Dataset Model Var 5(0.2s) 7(0.28s) 9(0.36s) 11(0.44s) 13(0.52s) 15(0.6s) (M=Millions)
AVST[3] v 91.9 97.0 98.8 99.6 99.8 99.9 42.4M
SyncNet[1] 75.8 82.3 87.6 91.8 94.5 96.1 13.6M
LRS2 PM|2] 88.1 93.8 96.4 97.9 98.7 99.1 13.6M
VocaLiST[4] 92.8 96.7 98.4 99.3 99.6 99.8 80.1IM
ModEFormer - Ours 94.5 97.1 98.5 99.3 99.7 99.8 59.0M
LRS3 AVSTI[3] v 77.3 88.0 93.3 96.4 97.8 98.6 42.4M
ModEFormer - Ours 90.9 93.1 96.0 97.7 98.7 99.2 59.0M

» ModEFormer outperforms all the previous approaches using a fixed number of input frames.

» The significant increase in performance is due to the modality-preserving architecture and the novel
sampling strategy including multiple hard negatives during training.

» Since AVST has seen clips of variable length input during training, it cannot be compared with other
approaches



Ablation Study

» Architectural ablation — We study the effect of
using transformers in addition to the CNN
encoders for each modality branch

Table 2. Results of 3D-SyncNet and ModEFormer on LRS3 test set
» We build a 3D-SyncNet architecture by removing 3D-SyncNet ModEFormer ModEFormer

the transformer encoders in each branch and train (1st stage) (2nd stage)

with the same InfoNCE loss and sampling strategy Accuracy 80.2% 88.3% 90.9%

» On the LRS3 test dataset we see a remarkable
increase in the accuracy of 8.1%

» Negative sampling strategy — We also experiment

o q—0—t 30— . o | —e— 15 frames to find the optimal number of hard negatives
O=Q—e @ . - - - . .« .
BT e—t—e—, . . between 2 to 25 to be used during training.
o-0—o I —o— 13 frames
- 96 /././T\e ®
Soq| o ° ! —e— llframes > The overall lip-sync accuracy peaks when the
= N . .
S e —e—, o ® | —e— 9 frames number of hard negatives is 11.
< e
92 ./‘/ :
o~ /? o—=" o—® —eo— 7 frames . .
90 o« i » We see a further increase of 2.6% in second stage
® ! —— . . . . .
gs L ! = > frames training that validates the benefit of our negative
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Applications

» Offset detection — We apply a trained
ModEFormer to detect any audio-video lagin a
given test clip

» For a given clip, we compute cosine
similarities at every video frame for audio
windows in its neighborhood

» We identify the predicted offset as the audio
window with highest cosine similarity and
generate the histogram.

» Using this analysis, we found that LRS2 and
LRS3 are out-of-sync by one frame using a third
out-of-distribution dataset, VoxCeleb?2.
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