

A M A Z O N S T U D I O S

ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers

Akash Gupta

aksg@nyu.edu New York University **Rohun Tripathi**

rt443@cornell.edu

Amazon Studios

Wondong Jang

dotol1216@gmail.com Amazon Studios

Audio-video synchronization in videos

Audio-video synchronization in videos

These errors occur when the audio and video components of a video are not synchronized properly, leading to a poor viewing experience.

Requires manual supervision to align audio with the video but it is time consuming and prone to human errors

Motivation

> An automated off-sync detector can help identify these errors and provide a more accurate synchronization between audio and video.

> Additionally, an off-sync detector can help video creators save time and resources by automating the process of detecting and correcting these errors.

Some other practical applications -

1. Active speaker detection

Previous approaches

SyncNet [Chung et al. 2016] – ConvNet Siamese style architecture trained with a Euclidean distance contrastive loss for off-sync detection

(a) Audio stream

(b) Visual stream

Video feature

Perfect Match [Chung et al. 2019] – Introduces a 3D-Conv based image encoder to include RGB images from the video stream

A multi-way cross entropy loss is used to process a batch of 1 video feature, 1 positive audio feature and N-1 negative features and performs multiclass classification

Previous approaches

AVST [Chen et al. 2021] - Introduced attention to learn correlation between longer audio and video sequences as informative portions can be localized in a short subsequence.

VocaLiST [Kadandale et al. 2022] – *Multiple* cross modal transformers thereby learning audio-video, video-audio and hybrid correlations

Previous approaches

CNN-based

Self and cross attention

ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers

- ModEFormer has separate encoders for audio and video modalities and extracts the corresponding embeddings
- Video branch takes a sequence of RGB frames while the audio branch takes a fixed size crop from the melspectrogram.
- Each modality branch contains a CNN encoder to extract intermediate representations
- The above representations are concatenated with sinusoidal positional encodings and are passed to modality-specific transformers.

ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers

Unlike previous approaches, we ensure no mixing between modalities at any step.

We take the learned [CLS] token representation from the transformer encoder as the final embedding for each modality. To enable contrastive learning, each video modality is paired up with a bunch of audio samples illustrating positive and negative examples.

ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers

$$\begin{split} L = -\frac{1}{B} \sum_{\mathbf{v}, \mathbf{a}^+ \in \mathcal{P}} \log \frac{e^{(\phi(\mathbf{v}, \mathbf{a}^+)/\tau)}}{\sum_{\mathbf{a} \in \mathcal{N}(\mathbf{v})} e^{(\phi(\mathbf{v}, \mathbf{a})/\tau)}}, \\ \frac{\text{InfoNCE loss function}}{\frac{1}{2}} \end{split}$$

 $\phi(\mathbf{v}, \mathbf{a}) = \frac{\mathbf{v}}{|\mathbf{v}|} \cdot \frac{\mathbf{a}}{|\mathbf{a}|}.$

Cosine similarity to calculate sync score

- Unlike previous approaches, we ensure no mixing between modalities at any step.
- We take the learned [CLS] token representation as the final embedding for each modality.
- To enable contrastive learning, each video modality is paired up with a bunch of audio samples illustrating positive and negative examples
- We calculate a sync score and use InfoNCE loss minimization which offers better generalization allowing to learn discriminative and noiseinvariant features

Audio-Video Contrastive learning

Push aligned audio-video latent representations closer to each other and misaligned latent representations far apart.

Audio-Video Contrastive learning

Push similar (positive) latent representations closer to each other and dissimilar (negative) latent representations far apart.

Sampling strategy -

 <u>Positives</u> – Audio and video are temporally aligned coming from the same clip.

 <u>Easy negatives</u> – Audio and video coming from a different clip.

<u>Hard negatives</u> – Audio and video from the same clip but temporally shifted

Experimental setup

- ModEFormer training Carried out in two stages
 - Stage 1 Here we take a large batch size of 2000 and where each batch entry is from a unique clip and has two corresponding hard negative audio samples
 - Stage 2 Here we increase the number of hard negatives and also start incorporating easy negatives in the batch.
 - We develop such paradigm to obtain benefits of large batch size from contrastive learning (stage 1) and also efficiently incorporate diversity in training samples for better generalization (stage 2)

- Datasets used We used Lip reading sentences (LRS) datasets
 - LRS2 Contains thousands of spoken sentences from BBC television with a length of upto 100 characters.

Set	Dates	# utterances	# word instances	Vocab
Pre-train	11/2010-06/2016	96,318	2,064,118	41,427
Train	11/2010-06/2016	45,839	329,180	17,660
Validation	06/2016-09/2016	1,082	7,866	1,984
Test	09/2016-03/2017	1,243	6,663	1,698

 LRS3 - Contains thousands of spoken sentences from TED and TEDx videos. We created the val set by randomly slicing the 40% of the "Trainval" partition.

Set	# videos	# utterances	# word instances	Vocab
Pre-train	5,090	118,516	3.9M	51k
Trainval	4,004	31,982	358k	17k
Test	412	1,321	10k	2k

Results

➢ We use lip-synchronization accuracy as defined by previous approaches on different input video clip lengths to compare the performance of ModEFormer on the LRS test datasets.

			Clip Length in Frames (Seconds)			# of params			
Dataset	Model	Var	5 (0.2s)	7 (0.28s)	9 (0.36s)	11 (0.44s)	13 (0.52s)	15 (0.6s)	(M=Millions)
	AVST[3]	\checkmark	91.9	97.0	98.8	99.6	99.8	99.9	42.4M
	SyncNet[]		75.8	82.3	87.6	91.8	94.5	96.1	13.6M
LRS2	PM[2]		88.1	93.8	96.4	97.9	98.7	99.1	13.6M
	VocaLiST[4]		92.8	96.7	98.4	99.3	99.6	99.8	80.1M
	ModEFormer - Ours		94.5	97.1	98.5	99.3	99.7	99.8	59.0M
LRS3	AVST[3]	\checkmark	77.3	88.0	93.3	96.4	97.8	98.6	42.4M
	ModEFormer - Ours		90.9	93.1	96.0	97. 7	98.7	99.2	59.0M

> ModEFormer outperforms all the previous approaches using a fixed number of input frames.

- > The significant increase in performance is due to the modality-preserving architecture and the novel sampling strategy including multiple hard negatives during training.
- Since AVST has seen clips of variable length input during training, it cannot be compared with other approaches

Ablation Study

- Architectural ablation We study the effect of using transformers in addition to the CNN encoders for each modality branch
- We build a 3D-SyncNet architecture by removing the transformer encoders in each branch and train with the same InfoNCE loss and sampling strategy
- On the LRS3 test dataset we see a remarkable increase in the accuracy of 8.1%

Table 2. Results of 3D-SyncNet and ModEFormer on LRS3 test s	set
--	-----

	2D SynaNat	ModEFormer	ModEFormer	
	3D-SyncNet	(1st stage)	(2nd stage)	
Accuracy	80.2%	88.3%	90.9%	

- Negative sampling strategy We also experiment to find the optimal number of hard negatives between 2 to 25 to be used during training.
- The overall lip-sync accuracy peaks when the number of hard negatives is 11.
- We see a further increase of 2.6% in second stage training that validates the benefit of our negative sampling strategy.

Applications

- Offset detection We apply a trained ModEFormer to detect any audio-video lag in a given test clip
- For a given clip, we compute cosine similarities at every video frame for audio windows in its neighborhood
- ➢ We identify the predicted offset as the audio window with highest cosine similarity and generate the histogram.
- ➢ Using this analysis, we found that LRS2 and LRS3 are out-of-sync by one frame using a third out-of-distribution dataset, VoxCeleb2.

Thank you for your attention!