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ABSTRACT

We propose a throughput-optimal biased backpressure (BP) algo-
rithm for routing, where the bias is learned through a graph neural
network that seeks to minimize end-to-end delay. Classical BP rout-
ing provides a simple yet powerful distributed solution for resource
allocation in wireless multi-hop networks but has poor delay perfor-
mance. A low-cost approach to improve this delay performance is
to favor shorter paths by incorporating pre-defined biases in the BP
computation, such as a bias based on the shortest path (hop) distance
to the destination. In this work, we improve upon the widely-used
metric of hop distance (and its variants) for the shortest path bias by
introducing a bias based on the link duty cycle, which we predict
using a graph convolutional neural network. Numerical results show
that our approach can improve the delay performance compared to
classical BP and existing BP alternatives based on pre-defined bias
while being adaptive to interference density. In terms of complexity,
our distributed implementation only introduces a one-time overhead
(linear in the number of devices in the network) compared to classi-
cal BP, and a constant overhead compared to the lowest-complexity
existing bias-based BP algorithms.

Index Terms— Backpressure routing, graph neural networks,
scheduling duty cycle, independent set, bias, shortest path.

1. INTRODUCTION

Wireless multi-hop networks have been traditionally used in mili-
tary communications, disaster relief, and wireless sensor networks,
and are envisioned to support emerging applications such as con-
nected vehicles, drone/robot swarms, XG (device-to-device, wire-
less backhaul, and non-terrestrial coverage), Internet of Things, and
machine-to-machine communications [[1H6]]. An attractive feature of
wireless multi-hop networks is its self-organizing capability without
relying on infrastructure, enabled by distributed resource allocation
schemes. Among those schemes, backpressure (BP) routing [[7] is a
well-established solution for resource allocation across the physical,
media access control (MAC), and network layers [[8H21]]. In the BP
algorithm, each node maintains a separate queue for packets to each
destination (also denominated as commodity), routing decisions are
made by selecting the commodity with the maximum differential
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(a) (b)
Fig. 1: A flow from the red node to the blue node in a wireless
multi-hop network with 60 nodes. The normalized (across all links)
number of packets sent over each link in 500 time slots is illustrated
by their width. (a) Basic BP routing. (b) Enhanced dynamic BP
routing (EDR) [[8,9] with a pre-defined bias (visualized by the node
sizes) given by a scaled version of the shortest path to the destination.

queue backlog between the two ends of each link, and data transmis-
sions are activated on a set of non-interfering links via MaxWeight
scheduling [7]. The BP mechanism can drive the packets to explore
all possible routes towards their destinations, while stabilizing the
queues in the network for any flow rates within the network capacity
region, i.e., BP achieves throughput optimality [[7H9].

However, it is well-known that the classical BP routing suffers
from poor delay performance for flows of low to medium rate [8-12],
exhibiting undesirable characteristics such as slow startup, random
walk, and the last packet problem [13|[14]]. When a flow starts, many
packets have to be first backlogged to form stable queue backlog-
based gradients, causing large initial end-to-end delay. During BP
scheduling, the fluctuations in queue backlogs drive packets towards
random directions, causing unnecessarily long routes or loops. The
phenomena of slow startup and random walk in BP routing are il-
lustrated by the example in Fig. [[(a)} in which packets from the red
source node did not reach their blue destination in the first 500 time
slots, but were trapped in two loops shown by the thickest edges.

The existing efforts to improve the delay performance of BP can
be categorized into four types: 1) Use pre-defined queue-agnostic bi-
ases, such as the shortest path distance [[8}9] or functions of it [10], to
guide low-rate flows through the shortest routes. For example, with
BP enhanced by the shortest path distance bias [8[9], in Fig. [I(D)]
packets can quickly reach their destination through two major routes
around the empty central area. 2) Use queue-dependent biases that
aggregate the queueing state information (QSI) of the local neighbor-
hood (or global QSI) to improve the myopic BP decisions [11}|12]
or use shadow queues [13}|15] to dynamically increase the backpres-
sure. 3) Use delay metrics to replace the queue-dependent biases
[11},/14,/16] or dynamically select routing schemes [18]]. 4) Impose
restrictions on the routes [[17] or hop counts [19] to reduce the effect
of loops. Solutions based on queue-agnostic biases are relatively
simple, effective in mitigating the slow startup and random walk



problems, they are throughput optimal [[8H10], and cost only a one-
time communication overhead. In contrast, leveraging neighboring
QSI incurs additional overhead per time slot, using delay metrics
[[11,14}16]] and methods based on route restrictions [[17,/19]] are more
complex in implementation and could reduce the network capacity
region. In addition, most of the aforementioned approaches require
careful parameter tuning, typically done via trial-and-error. Besides
those efforts, practical concerns in network connectivity [13,21] and
network state uncertainty [20] have also been addressed.

In this work, our goal is to maintain the simplicity and computa-
tional tractability of the first type of existing works (queue-agnostic
biases) but improve their performance through graph-based machine
learning. Specifically, we seek to improve the widely-used bias given
by the shortest hop distance to the destination [[8H10l18l/19]], by con-
sidering the differences in link duty cycles in scheduling, rather than
treating all links equally. We propose to predict the scheduling duty
cycles of all the links with a graph neural network (GNN), an ar-
chitecture that has been recently applied to improve the through-
put [22, 23], delay [24]], and overhead [25] of link scheduling in
wireless multi-hop networks. From the perspective of routing, the in-
terfering wireless links are transformed into conflict-free links with
effective rates equal to the link rates weighted by scheduling duty
cycles, which can improve the routing decision, e.g., by avoiding
hot-spots with many interfering neighbors (high betweenness cen-
trality [26]]). In addition, our approach can also lift the burden of pa-
rameter tuning by automatically increasing the weight of pre-defined
biases in wireless networks with high interference degree.

Contribution. The contributions of this paper are twofold:

1) We propose an approach to leverage the scheduling duty cycle of
links for delay-aware BP routing by learning appropriate biases us-
ing GNNs, and

2) Through numerical experiments, we demonstrate the superior de-
lay performance of the shortest path bias based on link duty cycle in
BP routing, especially in wireless networks with high interference.

2. SYSTEM MODEL

A wireless multi-hop network can be modeled as an undirected graph
G" = (V, &), where V is a set of nodes representing user devices in
the network, and £ represents a set of links, where e = (4,5) € &
for i, j € V represents that node ¢ and node j can talk to each other.
We call G" the connectivity graph, as it describes the connectivity
relationship of the network. Here, we assume that G" is a connected
graph, so that two arbitrary nodes in the network can always reach
each other. Notice that routing involves directed links, so we use

(i,—.]k ) to denote data packets being transmitted from node ¢ to node j
over link (2, j). There is a set of flows F in the network, in which a
flow f = (i,¢) € F, where i # cand i, ¢ € V, describes the stream
of packets from a source node ¢ to a destination node c, potentially
through multiple links. At a node ¢ € V, there is a set of queues,
{Ufc) |c € V}, in which Ui(c) represents the length of the queue for
data packets destined to node ¢ (or packets of commodity c).

To describe the conflict relationship between links, we define
the conflict graph, G¢ = (€,C), as follows: a vertex e € & repre-
sents a link in the network, and the presence of an undirected edge
(e1,e2) € C captures the interference relationship between links
e1,e2 € £. We will be focusing on two popular models often used
to define the conflict relationship between two links: 1) Interface
conflict, where the conflict graph is given by the line graph of the
connectivity graph. This represents the case where two links sharing
the same node cannot be turned on simultaneously, e.g., if each node

is equipped with only one radio transceiver. 2) Physical distance in-
terference model [27]], which arises when two links interfere with
each other if their incident users are within a certain distance such
that their simultaneous transmission will cause the outage probabil-
ity to exceed a prescribed level. A simplified scenario where all the
users transmit at identical power levels with an omnidirectional an-
tenna can be captured by the unit-disk interference model. In this
model, two links conflict with each other if any of their nodes are
within a pre-defined distance, which is the same for every pair of
links. For the rest of this paper, we assume the conflict graph G¢
to be known, e.g., by each link monitoring the wireless channel, or
through more sophisticated estimation as in [28].

The MAC of the wireless network is assumed to be time-slotted
orthogonal multiple access. Each time slot ¢ contains a stage of de-
cision making for routing and scheduling, followed by the second
stage of data transmission. Therefore, we use Ui(c) (t) to describe
the queue of commodity c at node ¢ at the beginning of time slot
t. The exogenous packet arrivals are collected by the non-negative
integer matrix A € Z‘f‘ XT, in which the element of row f and col-
umn ¢, A4, is the number of packets arriving at the source node of
flow f at time slot ¢t. Matrix R € Z'f'XT collects the (stochastic)
real-time link rates, of which an element R. ; represents the number
of packets that can be delivered over link e in time slot ¢. The long
term link rate of a link e € £ is denoted by 7. = E;<7 [Re,], and
7 = Eece,i<1 [Re,¢] is the network-wide average link rate.

3. (BIASED) BACKPRESSURE ROUTING

Classical backpressure routing is a distributed algorithm for routing
and scheduling, consisting of 4 steps. First, for each directed link
(m), the BP algorithm selects the optimal commodity cj; (t) as the
one with the maximal backpressure, which is defined as the differ-
ence of queue lengths between the sender ¢ and the receiver j,

¢l (1) = axgmax{U{°) (1) = U (1)} M

In step 2, the maximum differential backlog of (¢, 5) is found as:

wiy () = max{U 7P ) U P @01 @

In step 3, MaxWeight scheduling [7|] finds the schedule s(t) €
{0, 1}/¢1 to activate a set of non-conflicting links achieving the max-
imum total utility, where the per-link utility is u;; (¢) = R +ws; (),

s(t) = argmax §(t)' [R.:®w(t)] , 3)
8(t)e{0,1}1€l

where vector R, ; collects the real-time link rate of all links, vec-
tor w(t) = [w4; ()| (4, j) € €], where wi; = max{ws;(t), w;i(t)},
and the direction of the link selected by the max function will be
recorded for step 4. Notice that the MaxWeight scheduling in (3) in-
volves solving a maximum weighted independent set (MWIS) prob-
lem on the conflict graph (due to the implicit non-conflict constraint
on the schedule), which is NP-hard [29]. Therefore, in practice, (3) is
solved approximately by heuristics, such as centralized greedy maxi-
mal scheduler (GMS), distributed local greedy scheduler (LGS) [30]],
and GNN-enhanced schedulers [23]. In step 4, all of the real-time
link rate R.;¢ of a scheduled link is allocated to its optimal com-
modity ¢j;(t). The final transmission and routing variables of com-

modity ¢ € V on link (3, }) is
. Rije, ifc=cj;(t),wi;(t) > 0,s:5(t) =1,
M5j>(t)_{ . J(0)wig()) > 0,550 =1,

0, otherwise.



When a set of pre-defined biases for each pair of node and com-
modity, B = {BEC> |i,c € V}, are used to improve the delay per-
formance [BHIO0], step 1 in (1) and step 2 in () now respectively
become,

ciy(t) = argmax{U} (1) - U;7 (1)}, 5)
ce
wis(t) = max{T 0 (1)~ 0 Vw00, ©)

where U (t) = UL (t) + B'®). Since the bias B') is considered
to be independent from the queue lengths, we can see it as a non-
negative constant, i.e., it does not have to be updated in every time
slot. In practice, B can still be updated from time to time to match
the changing network topology.

4. LINK DUTY CYCLE PREDICTION WITH GNNS

In MaxWeight scheduling, the likelihood of a link being scheduled
depends on its local conflict or interference topology and the network
traffic load. We propose to use a GNN to predict the expected delay
on each link, which can serve to design a better bias in (3)-(6) than
simply the shortest path distance (in number of hops) between node
¢ and node j for commodity c.

We propose to predict the link duty cycle x € RI¢l as x =
Wge(1;w), where Wge is an L-layered convolutional GNN defined
on the conflict graph G, and w is the collection of trainable parame-
ters of the GNN. We define the output of an intermediate [-th layer of
the convolutional GNN as X! € RI€I*91 X0 = 11811y — XL
(column 0 of X %), and the I-th layer of the GNN is expressed as

X! = o (XH@g + L:XH@Q) Jle{l,....L}. ()

In (@), L is the normalized Laplacian of G¢, ®}, ®} € R%-1*%
are trainable parameters (collected in w), and oy(-) is the activa-
tion function of the I-th layer. The activation functions of the input
and hidden layers are selected as leaky ReLUs, whereas a node-wise
softmax activation is applied at the output layer (each row of XF).
The input and output dimensions are set as go = 1 and g, = 2.
Since L in is a local operator on G¢, each row of X!, e.g.,
X!, e € & can be computed through neighborhood aggregation as
the following local operation on link e,

-1
Xu* l

X' O+ | X - e |,
d(e)d(u)

u€Nge (e)

l
Xe* =0y

(®)
where X!, € R 9 captures the Ith-layer features on e, Nge(e)
denotes the set of (interfering) neighbors of e, and d(-) is the degree
of a vertex in G°. Based on (8), the link duty cycle vector x can be
computed in a fully distributed manner through L rounds of local
message exchanges between e € £ and its neighbors, making our
delay-enhanced BP routing a distributed algorithm.

With the estimated duty cycles of all the links, we propose two
ways of setting the per-hop distance for finding the delay-aware
shortest path between two nodes. Depending on availability of the
long term link rate 7., e € £, we define the per-hop delay distance of
link e as §c = 1/xc or 6e = 7/(zere), where 7 = Eece <7 [Re ¢
is the network-wide average link rate. By setting the edge weights of
the connectivity graph G™ as § = [dc|e € £], bias BEC) is set as the
weighted shortest path distance between nodes 7 and ¢ on G". This
distance can be computed via distributed algorithms for weighted
single source shortest path (SSSP) when a node joins the network,
or weighted all pairs shortest path (APSP) in general.

Complexity. For distributed implementation, the local communica-
tion complexity (defined as the rounds of local exchanges between
a node and its neighbors) of the GNN is O(L). The distributed
weighted SSSP with the Bellman-Ford algorithm [31}/32] and APSP
with a very recent algorithm in [33] both take O(|V|) rounds. Com-
pared to the hop distance-based methods [[8,9]], our approach bears
additional O(L) rounds of communications (and larger message
size). Notice that B can be reused over time slots until the net-
work topology (G" or G) changes, which is critical for overhead
reduction and scalability promotion.

Throughput Optimality. The classical BP algorithm can stabilize
the queues in the network as long as the arrival rates of flows are
within the network capacity region, which is proved by Lyapunov
drift theory [[8,9]. The same proof also applies to BP with non-
negative constant biases, as shown in [8/|9] and a similar proof in
[10]. Therefore, our approach retains the throughput optimality of
the classical BP, since our proposed delay-aware shortest path bias,
BZ{C), is non-negative, based on link weight . > 0, as x. > 0 for all
e € £ due to the softmax activation at the output layer in (7).

Training. The parameters w (collecting @) and ©' across all lay-
ers [) of our GNN are trained on a set of routing instances defined
on random network processes drawn from a target distribution 2.
More precisely, we draw several instances (indexed by k) of the
network topology, flows, packet arrivals, and link rates (G"(k),
G°(k), F(k), A(k),R(k)) ~ Q. For every instance, the GNN
first predicts the link duty cycle vector x(k) = Wge(g)(1;w), then
biases B(k) are generated by the APSP algorithm based on the link
distance vector §(k) = diag™'(x(k))1, then we run the bias-based
backpressure routing for 7" time slots, and collect the schedules for
each time slot, s”(t). We train the parameters w to minimize the
following mean squared error loss

¢(w) = Eq <|5|*1 X" (k) — Ex ([s* @31 - Sk(“])“i) :
)

Intuitively, by minimizing the loss in (@), we are choosing param-
eters w such that the softmax output of our GNN X’ is close to
predicting the fraction of time that each link is scheduled. We do
not seek to learn this complex function for any specific topology but
rather we want to minimize the average error over instances drawn
from Q. In practice, we approximate the expected values in (9) with
the corresponding empirical averages. Indeed, with the collected ex-
perience tuples, we update the parameters w of the GNN after each
training instance, through batch training with random memory sam-
pling, employing the Adam optimizer. Notice that, once trained, the
GNN can be used to compute the delay-aware bias for previously
unseen topologies without any retraining. As long as the new topol-
ogy, arrival rates, and link rates are similar to those observed in 2
during training, we illustrate in the next section that the trained GNN
generalizes to new instances observed during testing.

5. NUMERICAL EXPERIMENTS

We evaluate different biased BP routing algorithms on simulated
wireless multi-hop networks. As explained in Section[d] we consider
two variants of our proposed delay-aware bias where the weights of
each link are respectively defined as ¢ = 1/z. (denoted by SP-
1/z) and 0. = 7/(zere) (denoted by SP-7/(zr)). Recall that .
is the predicted link duty cycle and r. the long-term link rate. The
competing benchmarks include the basic BP, virtual queue-based BP
(VBR) [10]], EDR [|8,9]] with a bias defined by the shortest hop dis-
tance, including § = 1 (SP-Hop) and § = 10 (EDR-10), and BP
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Fig. 2: Delay performance of routing schemes. (a) End-to-end delay as a function of the network size under the interface conflict model.
(b) End-to-end delay as a function of the network size under unit-disk interference model. (c) Average delivery rate by 7" = 1000 as a
function of the arrival rate on random networks of 100 nodes with unit-disk interference model.

based on shortest path bias defined by link rate, 6 = 107/r (de-
noted by SP-107/r). The parameters of VBR and EDR are selected
according to [[10,/11].

The simulation is configured as follows. Every instance of a
wireless multi-hop network is generated by a 2D point process with
a given number of nodes |V| € {20,30,...,110} uniformly dis-
tributed in the plane with a constant density of 8/7. A simplified
scenario of a single channel is simulated. A link is established be-
tween two nodes if their distance is within 1.0, and the two conflict
models previewed in Section 2] are considered: for the interface con-
flict model the conflict graph has an average degree of 12.4 whereas
for the unit-disk interference model, the average conflict degree is
34.6. Notice that all the conflicts in the former model are included
in the conflicts of the latter. Ten instances of such random networks
are generated for each |V|. On each randomly generated network,
10 random test instances are generated. Each test instance contains
a number (uniformly chosen between |0.15[V|] and [0.30|V[]) of
random flows between different pairs of sources and destinations,
where the exogenous packet arrival follows a Poisson process with
a uniformly distributed arrival rate A(f) ~ U(0.2,1.0) for every
f € F. Each test instance also includes a realization of uniformly
distributed long-term link rates, 7. ~ U(10,42), which are the ex-
pected values of the real-time link rates, Re ¢ ~ N(r, 3). The syn-
thetic networks seek to represent wireless networks with uniformly
distributed users of identical omnidirectional transmit power. The
link rates are configured to capture fading channels with lognormal
shadowing. Our proposed biases are generated based on a 5-layer
convolutional GNN (L = 5, g = 32,1 € {1,...,4}), trained on
a set of 100 random networks with [V| € {20, 30, ...,60}, and the
flows and link rates are configured similarly to the test settings[l

Our simulations lasts for 7" = 1000 time slots, where we com-
pare the average end-to-end delay of packets attained by the 7 rout-
ing schemes considered. To be conservative, we treat the delay of an
undelivered packet as T" — to, where %, is the time it arrived at the
source node. The estimated end-to-end delay of routing schemes as
a function of the network size for both conflict models are presented
in Figs.[2(a)] and 2(b)] The delays increase with network size for all
methods due to the longer average hop distances of flows on larger
topologies. The vanilla BP performs the worst due to its low deliv-
ery rate (fraction of packets delivered by the end of the simulation)
that ranges from 0.56 in small networks (|V| = 20) to 0.11 in larger
networks (|V| = 110). By introducing hop distance as bias, SP-Hop

Training takes 5 hours on a workstation with a specification of 16GB
memory, 8 cores, and Geforce GTX 1070 GPU. The source code is published
athttps://github.com/zhongyuanzhao/dutyBP

can improve the delay of BP, and by scaling this bias by a factor
of 10, EDR-10 can significantly reduce the delay of BP. The SP-
107 /r method can further reduce delays of EDR-10 by 1/3 ~ 1/2
through additional information of the long-term link rates across the
network. Leveraging our GNN predictions of the scheduling duty
cycles of links, SP-1/x and SP-7/(xr) can further reduce the delays
over EDR-10 and SP-107/r, respectively, where the improvements
are more visible for the scenarios with higher average conflict de-
grees; see Fig[2(b)] Contrary to the results in [[T0], the delay of VBR
is much higher than EDR-10 in our tests, mainly due to the fact that
VBR is designed for wireless sensor networks with only one sink,
whereas flows in our simulation have different destinations. The test
results show that our approach can generalize to networks larger than
those seen during training, and can improve the delay of BP routing
by offloading traffic from hot-spots congested by many interfering
neighbors. Notice that shortest path biases (in hops) are myopic to
this kind of information. Moreover, our GNN can learn the scale of
the needed bias given the interference density of the network, alle-
viating the need of careful parameter tuning needed in the scaling of
other methods, such as EDR-10 and SP-107 /7.

Next, we evaluate the delay performance of routing schemes un-
der different traffic loads, on 10 random networks of 100 nodes, un-
der the unit-disk interference model. For each random network, 10
realizations of random flows and random link rates are generated
like in the previous experiment, except that all the flows have iden-
tical arrival rate A € {0.05,0.25,...,1.65}. The delivery rates of
different routing schemes after 7" = 1000 time slots are presented
in Fig. Our approaches achieve the highest delivery rates un-
der heavier network loads. This shows that we can improve both
the delay and the delivery rate (number of packets delivered per unit
of time) over existing biased BP algorithms across different traffic
loads by leveraging our learning-based framework.

6. CONCLUSIONS

We improve the shortest path bias-based BP routing by replac-
ing the well-established hop distance with a delay-aware distance.
This delay-aware distance is computed using our predictions of
the scheduling duty cycle of links given by a GNN. This solution
inherits the simplicity, low per-slot overhead, and throughput op-
timality of BP routing with shortest path bias. Experiments show
that our approach can outperform other BP algorithms based on
pre-defined biases in terms of end-to-end delay and delivery rate
across different interference densities and traffic loads, and exhibits
good generalizability to larger networks.
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