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image just from
our thoughts?
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[ Background

Through EEG (Electroencephalography) we can record the brain activity.

How can we
record our
thoughts?
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[ Background ]

How we are Through EEG (Electroencephalography) we can record the brain activity.
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[ Related Works ]

Learning feature representation

from EEG signals EEG manifold learning
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EEG feature representation

CVPR 2017 EEG-Imagenet40 Dataset

Number of classes 40
Number of images per class 50
Total number of images

[1]
[2]

ICASSP 2023 EEG2Image: Image Reconstruction from EEG Brain Signals



[ Related Works ]

Learning feature representation

from EEG signals EEG manifold learning

EEG Brain Signals [ \
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EEG feature representation

Total EEG Data ~ 12000 (6 Participants) 128 Channels

CVPR 2017 EEG-Imagenet40 Dataset 440 Timesteps
Number of classes 40 EEG Classification
Number of imagc?s per class 50 Model Max VA TA at max VA
Total nomber of toages 2000 LSTMs + nonlinear  86.1% 83.9%
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Total EEG Data ~ 230 (23 Participants) ;‘2‘ $,ha””te's
EEG-Object10 Dataset imesteps

Number of classes 10

Digits | Characters | Objects
72.95%

Total number of Images ~ ~850

Accuracy | 72.88% 71.18%
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[ Proposed Method }

e How well contrastive loss works for EEG feature extraction?
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e How well contrastive loss works for EEG feature extraction?

e Therecent progress in Generative Networks makes it possible to train a GAN without supervision for a
small dataset. Can we use this fact for EEG to image generation for a small dataset?
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e How well contrastive loss works for EEG feature extraction?
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e How well contrastive loss works for EEG feature extraction?

el

!
LSTM
)
LSTM
)
gerdl 3 P
=

EEG EEG F SR PR W
Feature ' N g Y

"

. 0
[

Triplet Loss a ' " % £ 0 BT N late e,
minE[|1fo(e) = fo@)II} = 1fo(a®) = fole™IF+ 8] . b, A ey g e N el
Semi-hard Triplets . B W g

(1]
[2]

ICASSP 2023 EEG2Image: Image Reconstruction from EEG Brain Signals




[ Proposed Method }

e Therecent progress in Generative Networks makes it possible to train a GAN without supervision for a
small dataset. Can we use this fact for EEG to image generation for a small dataset?
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[ Proposed Method ]

e The recent progress in Generative Networks makes it possible to train a GAN without supervision for a
small dataset. Can we use this fact for EEG to image generation for a small dataset?
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[ Results: Qualitative J
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[ Results: Quantitative

Method Inception Score
AC-GAN 4.93
ThoughtViz 5.43

EEG2Image (Ours) 6.78

Objeict Class Apple Car Dog Gold Mobile Rose Scooter Tiger Wallet Watch All

" (n07739125) (n02958343) (n02084071) (n03445326) (n02992529) (nl12620196) (n03791053) (n02129604) (n04548362) (n04555897)
Mean 6.09 6.15 6.99 6.98 733 5.44 5.81 5.67 6.48 6.67 6.78
SD 0.05 0.084 0.031 0.082 0.030 0.089 0.077 0.057 0.086 0.037 0.086
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[ Ablation Study ]

(a) no modeloss and dataaug, (b) with modeloss and no dataaug, (c) no modeloss and with dataaug,
inception score 3.61. inception score 4.27. inception score 6.5.

(1]

ICASSP 2023 EEG2Image: Image Reconstruction from EEG Brain Signals



Conclusion

ICASSP 2023 EEG2Image: Image Reconstruction from EEG Brain Signals




[ Conclusion }

e We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG
signals.
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e We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG
signals.

e Our proposed framework has a better inception score than the previously proposed method for the
small-sized EEG dataset and synthesized images of size 128 x 128.

ICASSP 2023 EEG2Image: Image Reconstruction from EEG Brain Signals



[ Conclusion ]

e We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG
signals.

e Our proposed framework has a better inception score than the previously proposed method for the
small-sized EEG dataset and synthesized images of size 128 x 128.

e The framework consists of a contrastive learning approach to learn the good features of EEG data, which
is empirically shown to perform better than the softmax-based supervised learning method.
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[ Conclusion ]

e We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG
signals.

e Our proposed framework has a better inception score than the previously proposed method for the

small-sized EEG dataset and synthesized images of size 128 x 128.

e The framework consists of a contrastive learning approach to learn the good features of EEG data, which
is empirically shown to perform better than the softmax-based supervised learning method.

e As future work, we plan to tackle large-size EEG datasets and approach for complete self/un-supervised
learning for extracting features from EEG data and image synthesis.
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