

EEG2Image: Image Reconstruction from EEG Brain Signals

Prajwal Singh CVIG Lab

Pankaj Pandey Brain Lab

Krishna Miyapuram Brain Lab

Shanmuganathan Raman CVIG Lab

[1] https://beta.dreamstudio.ai/generate

Uncle Jerry

[1] https://beta.dreamstudio.ai/generate

Uncle Jerry

Our chef is watching pizza ad on a TV

Uncle Jerry

[1] https://beta.dreamstudio.ai/generate

[1] https://beta.dreamstudio.ai/generate

[1] https://beta.dreamstudio.ai/generate

Background

How can we record our thoughts?

[1] https://beta.dreamstudio.ai/generate

Background

Through **EEG** (Electroencephalography) we can record the brain activity.

https://beta.dreamstudio.ai/generate

2 Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017). Generative adversarial networks conditioned by brain signals. In Proceedings of the IEEE international conference on computer vision (pp. 3410-3418).

Background

https://beta.dreamstudio.ai/generate

2 Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017). Generative adversarial networks conditioned by brain signals. In Proceedings of the IEEE international conference on computer vision (pp. 3410-3418).

ICASSP 2023

Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep learning human mind for automated visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6809-6817).
Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017). Generative adversarial networks conditioned by brain signals. In Proceedings of the IEEE international conference on computer vision (pp. 3410-3418).

CVPR 2017 EEG-Imagenet40 Dataset

Number of classes	40
Number of images per class	50
Total number of images	2000

Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep learning human mind for automated visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6809-6817).
Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017). Generative adversarial networks conditioned by brain signals. In Proceedings of the IEEE international conference on computer vision (pp. 3410-3418).

CVPR 2017 EEG-Imagenet40 Dataset

Number of classes	40
Number of images per class	50
Total number of images	2000

Total EEG Data ~ 12000 (6 Participants) 12 44

128 Channels 440 Timesteps

EEG Classification

Model	Max VA	TA at max VA			
LSTMs + nonlinear	86.1%	83.9%			

Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep learning human mind for automated visual classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6809-6817)
Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017). Generative adversarial networks conditioned by brain signals. In Proceedings of the IEEE international conference on computer vision (pp. 3410-3418).

1] Tirupattur, P., Rawat, Y. S., Spampinato, C., & Shah, M. (2018, October). Thoughtviz: Visualizing human thoughts using generative adversarial network. In Proceedings of the 26th ACM international conference on Multimedia (pp. 950-958).

EEG-Object10 Dataset

Number of classes 10 Total number of Images

~850

Total EEG Data ~ 230 (23 Participants) 14 Channels 32 Timesteps

EEG-Object10 Dataset

Number of classes10Total number of Images~850

Digits Characters Objects
Accuracy 72.88% 71.18% 72.95%

1] Tirupattur, P., Rawat, Y. S., Spampinato, C., & Shah, M. (2018, October). Thoughtviz: Visualizing human thoughts using generative adversarial network. In Proceedings of the 26th ACM international conference on Multimedia (pp. 950-958).

• How well contrastive loss works for EEG feature extraction?

- How well contrastive loss works for EEG feature extraction?
- The recent progress in Generative Networks makes it possible to train a GAN without supervision for a small dataset. Can we use this fact for EEG to image generation for a small dataset?

• How well contrastive loss works for EEG feature extraction?

• How well contrastive loss works for EEG feature extraction?

Triplet Loss

$$\min_{\theta} \mathbb{E} \left[||f_{\theta}(x^{a}) - f_{\theta}(x^{p})||_{2}^{2} - ||f_{\theta}(x^{a}) - f_{\theta}(x^{n})||_{2}^{2} + \beta \right]$$

• How well contrastive loss works for EEG feature extraction?

Triplet Loss

$$\min_{\theta} \mathbb{E} \Big[||f_{\theta}(x^{a}) - f_{\theta}(x^{p})||_{2}^{2} - ||f_{\theta}(x^{a}) - f_{\theta}(x^{n})||_{2}^{2} + \beta \Big]$$

Semi-hard Triplets

• How well contrastive loss works for EEG feature extraction?

Triplet Loss

$$\min_{\theta} \mathbb{E} \left[||f_{\theta}(x^{a}) - f_{\theta}(x^{p})||_{2}^{2} - ||f_{\theta}(x^{a}) - f_{\theta}(x^{n})||_{2}^{2} + \beta \right]$$

Semi-hard Triplets

• How well contrastive loss works for EEG feature extraction?

• How well contrastive loss works for EEG feature extraction?

[1] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823). [2] https://omoindrot.github.io/triplet-loss

ICASSP 2023

• The recent progress in Generative Networks makes it possible to train a GAN without supervision for a small dataset. Can we use this fact for EEG to image generation for a small dataset?

• The recent progress in Generative Networks makes it possible to train a GAN without supervision for a small dataset. Can we use this fact for EEG to image generation for a small dataset?

• The recent progress in Generative Networks makes it possible to train a GAN without supervision for a small dataset. Can we use this fact for EEG to image generation for a small dataset?

1] Zhao, S., Liu, Z., Lin, J., Zhu, J. Y., & Han, S. (2020). Differentiable augmentation for data-efficient gan training. Advances in Neural Information Processing Systems, 33, 7559-7570.

[2] Lim, J. H., & Ye, J. C. (2017). Geometric gan. arXiv preprint arXiv:1705.02894.

[3] Mao, Q., Lee, H. Y., Tseng, H. Y., Ma, S., & Yang, M. H. (2019). Mode seeking generative adversarial networks for diverse image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1429-1437).

Results: Qualitative

[1] Tirupattur, P., Rawat, Y. S., Spampinato, C., & Shah, M. (2018, October). Thoughtviz: Visualizing human thoughts using generative adversarial network. In Proceedings of the 26th ACM international conference on Multimedia (pp. 950-958).
[2] Kumar, P., Saini, R., Roy, P. P., Sahu, P. K., & Dogra, D. P. (2018). Envisioned speech recognition using EEG sensors. Personal and Ubiquitous Computing, 22, 185-199.

Method	Inception Score
AC-GAN	4.93
ThoughtViz	5.43
EEG2Image (Ours)	6.78

Object Class	Apple (n07739125)	Car (n02958343)	Dog (n02084071)	Gold (n03445326)	Mobile (n02992529)	Rose (n12620196)	Scooter (n03791053)	Tiger (n02129604)	Wallet (n04548362)	Watch (n04555897)	All
Mean	6.09	6.15	6.99	6.98	7.33	5.44	5.81	5.67	6.48	6.67	6.78
SD	0.05	0.084	0.031	0.082	0.030	0.089	0.077	0.057	0.086	0.037	0.086

[1] Tirupattur, P., Rawat, Y. S., Spampinato, C., & Shah, M. (2018, October). Thoughtviz: Visualizing human thoughts using generative adversarial network. In Proceedings of the 26th ACM international conference on Multimedia (pp. 950-958).
[2] Kumar, P., Saini, R., Roy, P. P., Sahu, P. K., & Dogra, D. P. (2018). Envisioned speech recognition using EEG sensors. Personal and Ubiquitous Computing, 22, 185-199.
[3] Odena, A., Olah, C., & Shlens, J. (2017, July). Conditional image synthesis with auxiliary classifier gans. In International conference on machine learning (pp. 2642-2651). PMLR.

Ablation Study

(a) no modeloss and dataaug, inception score 3.61.

(b) with modeloss and no dataaug, inception score 4.27.

(c) no modeloss and with dataaug, inception score 6.5.

Conclusion

Conclusion

• We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG signals.

Conclusion

- We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG signals.
- Our proposed framework has a better inception score than the previously proposed method for the small-sized EEG dataset and synthesized images of size 128 × 128.

- We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG signals.
- Our proposed framework has a better inception score than the previously proposed method for the small-sized EEG dataset and synthesized images of size 128 × 128.
- The framework consists of a contrastive learning approach to learn the good features of EEG data, which is empirically shown to perform better than the softmax-based supervised learning method.

- We proposed a framework that uses a small-sized dataset for generating images from brain activity EEG signals.
- Our proposed framework has a better inception score than the previously proposed method for the small-sized EEG dataset and synthesized images of size 128 × 128.
- The framework consists of a contrastive learning approach to learn the good features of EEG data, which is empirically shown to perform better than the softmax-based supervised learning method.
- As future work, we plan to tackle large-size EEG datasets and approach for complete self/un-supervised learning for extracting features from EEG data and image synthesis.

37

EEG2Image: Image Reconstruction from EEG Brain Signals