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Distributed MIMO Radar

] Antennas spread out over a larger area

] Spatial diversity is exploited to improve the target
detection performance

1 Joint process at the fusion center by collecting all
the data

1 Emerging applications: radar imaging, stealth 4-:
targets detection, and so on /
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Cost-Efficient Solutions

J Analog-to-digital converters (ADCs) are costly and power-consuming at high bit rates
1 A large amount of data has to be transmitted to the fusion center
 Current solutions mainly for collocated MIMO radar

= Reduce sampling rate, e.g., sub-Nyquist MIMO radar (Cohen et al TSP18)

= Reduce quantized bits, e.g., one-bit MIMO radar (Xi et al TSP20)

= Optimize quantizers, e.g., Bit-Limited MIMO Radar (Xi et al TSP21)

MROur solution: develop a low-bit quantized distributed MIMO radar (LIQuiD-MIMO




J LiIQuiD-MIMO Radar Model
] Quantized Robust PCA (QRPCA) Problem Formulation
1 Our Method: APG-QRPCA Algorithm + LS-based Target Parameter Estimation

J Numerical results




LiQuiD-MIMO Radar Model

A. Signal Model

We assume that all the targets are distributed in the same 2-D plane where the transmit and receive antennas are located.
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LiQuiD-MIMO Radar Model

B. Sampling and Quantization with Low-Resolution ADCs

[ Using the low-resolution ADCs: each data is quantized into b bits, e.g., b = 2, 3,4;
[ Send quantized data to fusion center.

O X,,,:Target information matrix (TIM); W,,,,, :White Gaussian Noise (WGN); T,,,,, :Data transmission error (DTE).
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QRPCA Problem Formulation

0 Z = 0Y"(X + W) + T can be equivalent to Z = Q¥'°(X + T + W) (omitting the subscript mn).

m X : Low rank. Its rank depends on the number of targets with different distances or different velocities.
m T : Sparse. It is generally sparse since the bit error rate (BER) is generally quite low.
m T : Sparse. It is an equivalent sparse DTE before quantization.
[ Recover the low-rank matrix X and the sparse matrix T by solving QRPCA problem.

m Function D(-,") is similarity metric which measures the similarity between _
the quantized data and the unquantized data.
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QRPCA Problem Formulation

[ The relationship between quantization data Z and the unquantization

data Y=X+T can be written as y
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By considering the unknown noise distortion on the quantized data, we

define the similarity metric function D(-,)
D(Z,X+T)

=
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where p(+) is an element-wise function with p(x) = max{—x, 0}.



 Stepl: Accelerated Proximal Gradient (APG) Algorithm for QRPCA Problem
m Recover the low-rank matrix X and the sparse matrix T.

(1 Step2: Least Square (LS)-based Target Parameter Estimation

= Estimate the unknown target parameters {p®, v(¥)}X_. from recovered matrix X.

Recover TIM and DTE I
by solving QRPCA
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A. APG-QRPCA Algorithm

O Define h(X, T) = u|X[|, + Al[T]|; and g(X, T) = %D(Z,X + T), where h(X, T) is convex and g(X, T) is differentiable.

L The QPRCA problem can be rewritten as
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B. LS-based Target Parameter Estimation

d M, x M, TIM matrixes can be recovered at the fusion center.
 Asequential LS method introduced to sequentially estimate the position and velocity parameters.

= 0, = {p(")}ll\;l and 6, = {v(")}lk(=1 are implicitly determined by the matrices A,,,,, and B,,,,,
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Numerical Results

d M, = 3 transmit antennas, M,. = 10 receive antennas, uniformly distributed on the concentric circles
with radius 5km and 3km, respectively.

( The reference carrier frequency parameters f, = 5GHz and the frequency increment Af = 50MHz.

1 One CPI consists of @ = 128 pulses with Tpg; = 0.5ms and T, = 6.4ps.

[ The transmitters emit Hadamard sequences with length of N = 64.

1 1% symbol error rate is assumed to lead sparse data transmission error matrix.

] One target is located at p(» = [1100,1100]"m with v(¥) = [10,10]"m/s.
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It is shown that it is possible to simultaneously recover the matrices X,,,,, and T,,,,, from the low-bit quantized data.

 When the SNR is less than 20dB, the performance of 6-bit quantization is very close to that without quantization,

proving the effectiveness of low-bit quantization.



Numerical Results
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It can be seen that the position and velocity of the target can be accurately estimated by the LS-based method, using
4-bit quantization at SNR=20dB.



Conclusions

J LiQuiD MIMO radar
= Propose a low-bit quantized distributed MIMO radar system,;
= Formulate a QRPCA problem to recover the infinite-precision target
Information matrix and the data transmission errors simultaneously;
= Demonstrate the feasibility of implementing a low-bit quantized distributed
MIMO radar system.
J Future work
= Derive the performance bound of the proposed LiQuiD-MIMO radar.
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