
I. INTRODUCTION

 Nowadays, multimodal speech emotion

recognition (SER) has received more

attention due to fusing multimodal

information such as audio, text and visual

Recent SER studies achieved high accuracy; 

however, the speakers emotional state is not 

fully understood  

Selecting large number hand-crafted features 

are required for better performance

In this work, a deep learning-based 

multimodal SER has been proposed

.
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The Proposed Method

Step 1: Audio features are learned by CNN+BiGRU

Step 2: Text are represent by Glove vector and by Bi-GRU

Step 3: and       learned by CMT, represent as

Step 4: Output of the CMT is pass 

through SA and represent as    

Model Training

Figure 2: Performances for different (a) hidden dimension with 

different layers in Bi-GRU (b) number of TLs in CMT 

Table 3: Comparison with state-of-the-art methods 

 Ablation study 

Table 4 show the impact of each module in 

our system

There is a significant performance 

reduction when using only a unimodal

CMT with Bi-GRU and SA perform best 

among all methods

Table 4: Ablation study of the proposed model

We demonstrate that the transformer

alignment network can lead to deeper

interaction between different modalities to

enhance performance

The proposed method performs 

significantly better than the most recent 

state-of-the-art MSER methods

Future work: We plan build a real-time

application which allows to detect their

emotional states automatically
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WA UA Mod Bi-GRU CMT SA

69.18 70.20 A 

70.16 70.91 A  

72.37 73.05 A  

75.68 76.85 A   

72.34 73.51 T 

71.06 72.45 T  

75.26 76.17 T  

80.13 80.66 T   

75.05 76.76 A+T 

77.39 78.21 A+T  

80.26 81.64 A+T  

83.57 84.43 A+T   

Methods Modality WA (%) UA (%) 

CV-5

Liu et al. [5] A+T 72.39 70.08

Santoso et al. [6] A+T 76.10 75.90

Makiuchi et al.[3] A+T 73.50 73

Chen et al. [1] A+T 74.30 75.30

Wu et al. [2] A+T 77.57 78.41

Proposed A+T 78.82 79.95

CV-10

Li et al. [7] A+T ̶ 79.20

Yoon et al. [4] A+T 76.50 77.60

Wu et al. [2] A+T 77.76 78.30

Proposed A+T 80.63 81.49

Session 5

Hu et al. [8] A+T+V 70.66 70.56

Wu et al. [2] A+T 83.08 83.22

Proposed A+T 83.57 84.43
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Figure 1: Architecture of the proposed method

# of Fold Modality WA (%) UA (%)

CV-5 A 71.09±0.42 71.84±0.38

CV-5 T 75.18±0.36 76.51±0.55

CV-5 A+T 78.82±0.50 79.95±0.66

Session 5 A 75.68±0.54 76.85±0.48

Session 5 T 80.13±1.08 80.66±0.73

Session 5 A+T 83.57±0.71 84.43±0.80

CV-10 A 74.31±0.85 75.69±0.78

CV-10 T 79.81±0.77 80.24±1.21

CV-10 A+T 80.63±0.90 81.49±1.14

 Evaluation

We adopt 5-fold, 10-fold cross-validation 

and Session 5 as test techniques 

 We present a cross-modal Transformer

(CMT) and self-attention (SA) based

framework for multimodal SER task

We used large set (125-dimensions) of 

hand-crafted features 

A CMT block is designed to capture better 

inter- and intra-interactions and temporal 

information between the audio and textual 

features

Then the SA network is employed to utilize 

weighted emotional information from the 

fused multimodal features to improve the 

performance
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Table 2: The results of the proposed model

Table 1: Sample distribution on IEMOCAP

Does different cross-validation (CV) cause

enhanced model performance?

Emotion Angry Happy Neutral Sad Total

Number 1103 1636 1708 1084 5531

To compare with previous works [1, 2, 3],

we used four emotion classes

The interactive relations between different

modalities of speech representations for

emotion recognition have not yet been well

investigated

Streaming end-to-end ASER are still lacking

success due to low efficacy

Fusion of high-level features from different

modalities becomes a major issue in multimodal

emotion recognition tasks

Step 5: Then we use a FC and predict 

emotion using Softmax function)( j
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And  ba = 125 dimensions feature vector

V-I. Experimental Setup Effects of Bi-GRU and Transformer layers on the model

V-II. Evaluation Results
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sŷ syHere        and      are the predict and 

original output of the class
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