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ABSTRACT
Since mask occlusion causes plentiful loss of facial feature,
Masked Face Recognition (MFR) is a challenging image
processing task, and the recognition results are susceptible to
noise. However, existing MFR methods are mostly determinis-
tic point embedding models, which are limited in representing
noise images. Moreover, Data Uncertainty Learning (DUL)
fails to achieve reasonable performance in MFR. Therefore,
we propose a novel two-stream convolutional network,
masked face data uncertainty learning (MaskDUL), that
solves the problems by sampling uncertainty and intra-class
distribution learning in MFR. Specifically, a Hard Kullback-
Leibler Divergence (H-KLD) method is proposed to serve
as an adaptive variance regularizer and a magnitude-based
module is adopted to adaptively adjust the angular margin of
different samples. Finally, insightful evaluation demonstrates
the effectiveness and robustness of our MaskDUL.

Index Terms—Masked Face Recognition, Data Uncertainty
Learning, Intra-class Distribution Learning

I. INTRODUCTION

Masked face recognition (MFR) has gradually aroused great
attention because of COVID-19, and it also has a wide range
of applications in academia and industry [1]. Due to the
mask occlusion, extensive facial features are lost, as shown
in Fig. 1(a). The masked face is difficult to recognize, and
the result is also susceptible to noise [2]–[4]. In response to
the aforementioned difficulties, many MFR methods based on
Deterministic Point Embedding (DPE) have been proposed,
such as Deep Cascaded Regression (DCR) [5], Upper Patch
Attention (UPA) [6], and MFR algorithm based on large
margin Cosine loss (MFCosface) [7]. However, it is difficult
to estimate a precise point embedding for noise images in the
latent space and the optimization direction is fixed towards
the class center, which is prone to overfitting noise, as shown
in Fig. 1(b). Therefore, MFR is a challenging and important
image processing task [8].

As noise in images is inevitable, modeling the uncertainty
is critical to the image processing task [9]. Data Uncer-
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tainty Learning (DUL) is an ingenious uncertainty method
that estimates a Gaussian distribution for each sample in
latent space [10]. The classification model DULcls enhances
the learning of low-uncertainty (high-quality) samples and
weakening the learning of high-uncertainty noise, which is
superior to other uncertainty methods in image processing
[9], [11]. Unfortunately, due to the mask occlusion, DUL
tends to regard the masked face as noise, thus weakening
the optimization to it, as shown in Fig. 1(c). Therefore, DUL
fail to achieve reasonable performance in MFR tasks (See
Section II for details).
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Fig. 1. (a) Samples of non-masked and masked faces,
represented by circle and triangle respectively. (b) DPE
method in MFR. w and w′ are the class centers of different
identities. The arrow indicates the optimization direction and
the wrong direction is marked in red. (c) DUL in MFR. The
inner circle represents the mean (feature) and the outer circle
represents the variance (uncertainty). (d) MaskDUL in MFR.
The high-quality faces are pulled to the class center, while
the low-quality faces are pushed far away.

To address the aforementioned problems, we propose a
novel two-stream convolutional network called Masked face
Data Uncertainty Learning (MaskDUL). Specifically, we
construct an adaptive variance regularizer for masked faces
called Hard Kullback-Leibler Divergence (H-KLD) based on
the DUL method and introduce a magnitude-based method
to improve intra-class distribution. The effect is shown in
Fig. 1(d). Finally, experiments prove the advancement of our



MaskDUL. The contributions of this work are as follows:
(1) To the best of our knowledge, this is the first work

that applies uncertainty learning to MFR tasks.
(2) The constructed two-stream convolutional network

solves the problems of treating masked faces as noise in
the traditional DUL methods.

(3) Our MaskDUL obtains high-quality sample distribu-
tions, in which high-quality masked and non-masked faces
from the same class are close to the class center, while the
real noise samples are far away from the center.

II. THE LIMITATIONS OF DUL

The softmax loss of DULcls is calculated as follows:

L′
cls =

1

N

N∑
i

− log
ewyi

si∑C
c ewcsi

(1)

where si is an equivalent sampling representation consisting
of identity feature of the face µi and its uncertainty σi, and
ϵ is a standard Gaussian random noise independent of model.
To avoid degenerating into a deterministic model [12], a regu-
larization term is adopted to explicitly constrain N (µi, σi) to
approach a standard normal distribution, N (0, I), measured
by Kullback-Leibler Divergence (KLD):
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Lkl assigns small variance to the high-quality sample to
enhance the learning to it, and assign large variance to noise
to avoid overlearning. The loss of facial features caused by
mask occlusion will aggravate the uncertainty of identity
recognition of masked faces. DULcls encounters some new
challenges in the MFR tasks for two reasons:

(1) during the training period, masked faces are prone to
be misjudged as noise, thus weakening the optimization;

(2) the model devotes to estimating uncertainty, but neglects
its further use in intra-class distribution learning, which lead
to overly scattered intra-class distribution.

LFW is a non-masked face dataset, while M-LFW is the
corresponding synthetic masked dataset. The inconsistent
sample distribution learned by DUL is shown in Fig. 2 (a).
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Fig. 2. The distribution learned by DULcls and MaskDUL.

III. PROPOSED METHOD
III-A. Overall Architecture

MaskDUL consists of a two-stream network with face and
masked face branches, and an optimization mechanism of
data uncertain learning based on hard variance constraint.
The training pipeline of MaskDUL is illustrated in Fig. 3.
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Fig. 3. Training pipeline of MaskDUL. Thereinto, M-
VGGFace2 is adopted as the training set, which is a large-
scale synthetic masked face dataset with 50% masked face
proportion. Then we choose IResNet-50 as the backbone to
extract two 512-D vectors, namely µi and σi.

Two branches have independent Start ResBlock and output
different mean µi and variance σi, which are further re-
parameterized to obtain the equivalent sampling representa-
tion si to calculate Lmag. Weight sharing strategy enables
the model to learn shared cross-domain feature between
face and masked face. Then H-KLD module is adopted
to impose a hard constraint on variance uncertainty ||σi||
to calculate Lh-kl. MaskDUL can dynamically adjust the
learning preference of face and masked face according to
above two loss, and gain the optimal learning effect through
the joint optimization of LMaskDUL as follows:

LMaskDUL = Lmag + λLh-kl, (3)

where λ is a trade-off hyperparameter for H-KLD.

III-B. Hard Kullback-Leibler Divergence
To diminish the variance of between the masked faces and

non-masked faces, we adopt a standard normal distribution
with smaller variance, N (0, (ξI)2), to constrain the estimated
distribution of masked face, N (µ,σ2). Thereinto, ξ indicates
the constraint factor, which is used to control the constraint
strength of masked face. Then, to achieve more accurate
constraints, we define a linear decreasing function h(||σ||)
on [lσ, uσ] to determine the constraint factor ξ = h(||σ||)
according to the current variance uncertainty ||σ|| of masked
face sample. For masked face sample:

h(||σ||) =
{ uξ−lξ

uσ−lσ
(uσ − ||σ||) + lξ, ||σ|| ∈ [lσ, uσ]

uξ, ||σ|| ∈ [uσ,+∞)
(4)

where lσ, uσ represents the lower and upper bound of variance
uncertainty, and lξ, uξ represents the lower and upper bound
of constraint factors. For the sample, ||σ|| ∈ [lσ, uσ], we



put a monotonically decreasing constraint factor on it, while
the sample beyond the upper bound, ||σ|| ∈ [uσ,+∞), we
keep the original constraint to avoid overfitting. Next, we
also adopt KLD to measure the distance between above two
distributions to construct a Hard KLD (H-KLD) with hard
constraints, thus obtaining the expression of Lh-kl as follows:
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For face samples, Lh−kl is equal to Lkl, while for masked
face samples, Lh−kl imposes strong constraints on high-
quality masked face samples and avoids overfitting noisy
masked face samples simultaneously.

III-C. Magnitude-based module
We introduced the magnitude-based module to encode

quality metrics into face representation, which optimize
the model according to the magnitude ai = ||fi||. Further,
it designed a magnitude-aware angular margin m(ai) to
impose a larger angular margin constraint on the high-
recognizable samples to approach the class center, while
a smaller constraint on the low-recognizable samples to
approach the origin. In addition, to stabilize the intra-class
structure, it designed the regularizer g(ai) to push each
sample towards the boundary of the feasible region, and
reward sample with large magnitude.

The loss function is calculated as follows:
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where s is the scaling parameter and λ′

g is a trade-off
hyperparameter between loss items. Finally, through theoreti-
cal derivation and experimental analysis, we determine the
boundary of magnitude, construct a strictly increasing convex
function m(ai) and a strictly decreasing convex function
g(ai) and prove the convergence and monotonicity of LMag .

IV. EXPERIMENTS
IV-A. Datasets and Implementation Details

The datasets used in our experiments are shown in Table
I. MaskTheFace [13] tool is adopted to synthesize training
set M-VGGFace2 with 5 mask styles and 50% masked face
proportion. Then all the images are aligned to 112×112 by
following the settings in ArcFace [3].

IResNet-50 [14] is adopted as backbone and the head
of the baseline model is: Backbone− Flatten− FC− BN,
while the Data Uncertainty Learning (DUL) methods have
an additional head branch. All the models are trained for

30 epochs using a SGD optimizer [15] with a momentum
of 0.9, weight decay of 5e-4, dropout probability of 0.4
and batch size of 128. The initial learning rate is 0.05
and divided by 10 at 10, 18, 25 epochs. RandomCrop and
RandomHorizontalFlip are used for data augmentation. For
MaskDUL, lξ is 0.5 and uξ is 1, lσ is 10 and uσ is 25,
and λ is set to 0.01. Other settings are consistent with
those provided in literature [3]–[7], [9]–[12]. See the website
(https://github.com/MySky37/MaskDUL) for details.

Table I. Description of the datasets.
Task Datasets #Identity #Image #Pair #Variation
Train M-VGGFace2 [16] 9.1K 6.6M — Full

MFV

RMFRD* [17] 426 4,015 7178 Unconstrained
MFR2* [13] 53 269 1200 Limited
M-LFW [7] 5,749 13,233 12,000 Limited
M-CALFW [18] 5,749 12,174 12,000 Large-age
M-AgeDB-30 [17] 568 16,488 12,000 Large-age
M-CFP-FP [17] 500 7,000 14,000 Large-pose
M-CASIA-FaceV5 [7] 500 2,500 10,000 Limited

* indicates real-world test set that is suitable for MFI task.

IV-B. Overall Comparison Results
We evaluate the proposed MaskDUL from the tasks of

MFV and MFI with the benchmarks, baselines and results
presented in Tables II and III. Overall, for MFV task,
MaskDUL outperforms the baselines on most benchmarks,
and achieves an average accuracy of 91.85, with a 1.11% to
12.97% performance improvement over the other methods.
And for MFI task, MaskDUL outperforms the baselines in all
benchmarks, especially on RMFRD, with a 1.11% to 19.02%
performance improvement of Rank-1 over the other methods.

Then we analyze 5 categories of models as follows:
(1) For FR models, ArcFace [3] has the worst performance

on both MFV and MFI tasks. Once again, the inapplicability
of applying FR model directly to MFR task is proved though
the performance of MagFace [4] improves to some extent.

(2) For Data Uncertainty Learning (DUL) models, such
as PFE [11] and DULcls [12], which proposed to use
probability embedding to represent noise samples more
accurately. However, because mask occlusion will mislead
the models assigning large variance to masked face, the DUL
models only achieve limited performance improvement.

(3) OFR [19] models achieve good results in FR task with
random and small-area occlusion, but they are not effective
enough on MFR task.

(4) PFR [20] models adopt partial face as input, ignoring
the overall visual appearance, which causes their performance
improvement is limited.

(5) The other three MFR methods, such as the second
place method, UPA [6] with dual-branch training strategy is
effective to some extent. But it is still deterministic point
embedding model with a limited performance.

(6) We proposes the hard regularization term, H-KLD, and
magnitude-based module, which enables the model to learn



Table II. Masked face verification (MFV) accuracy (%) of various methods.

Category Methods
Real-world Synthetic

AvgLimited Unconstrained Limited Large-age Large-pose
MFR2 RMFRD M-LFW M-CASIA-FaceV5 M-CALFW M-AgeDB 30 M-CFP FP

FR
ArcFace 89.37 64.81 86.63 88.36 76.36 75.11 71.52 78.88
MagFace 93.64 70.97 91.02 92.78 83.41 81.50 80.41 84.82

DUL

PFE 91.13 68.03 88.69 90.85 79.78 77.93 74.93 81.62
ProbFace 91.37 68.56 89.02 90.12 80.01 77.22 75.28 81.65
DUL-cls 92.32 69.43 89.64 91.38 81.35 79.66 78.31 83.16
DUL-GM 92.97 68.98 89.61 92.03 81.26 78.99 77.69 83.08

OFR PDSN 95.76 74.24 94.91 94.57 87.84 85.19 84.33 88.12
PFR DFM 96.61 76.89 94.52 95.43 86.33 86.43 84.25 88.64

MFR

DCR 97.27 77.87 94.98 97.28 89.86 88.02 85.47 90.11
MFCosFace 97.35 78.09 95.17 96.03 90.02 89.22 88.93 90.69
UPA 98.22 79.55 96.12 97.43 89.17 88.37 86.29 90.74
MaskDUL 99.01 80.23 96.32 97.40 91.03 90.02 88.91 91.85

The best result is shown in bold (similarly hereinafter).

more accurate uncertainty representations and construct a
more compact intra-class distribution in MFR, thus obtaining
remarkable performance improvements.

Table III. Masked face identification (MFI) accuracy (%) of
various methods.

Category Methods
MFR2 RMFRD

Rank-1 Rank-5 Rank-1 Rank-5

FR
ArcFace 86.37 88.65 53.12 62.28
MagFace 90.62 92.36 63.86 72.19

DUL

PFE 87.37 89.73 57.93 66.12
ProbFace 87.01 89.02 58.65 66.93
DUL-cls 88.11 90.78 60.68 68.65
DUL-GM 88.93 90.85 61.54 70.23

OFR PDSN 93.64 95.03 67.43 76.77
PFR DFM 93.33 95.51 67.99 76.21

MFR

DCR 95.78 96.97 68.62 77.02
MFCosFace 95.94 97.98 70.31 79.54
UPA 96.72 98.73 71.03 80.11
MaskDUL 97.15 99.05 72.14 80.73

IV-C. Ablation Study and Robustness Analysis
In Table IV, DULcls and MagFace are adopted as baselines

to testify the improved performance brought by introduc-
ing MagFace into DULcls and H-KLD into MaskDUL.
The performance improvement (1.85%∼3.85%) achieved by
DUL+Mag indicates that the advantages of the two models
can complement each other and achieve better performance.
The noise experiment is conducted on Gaussian blurred M-
VGGFace2, and the results fully prove the effectiveness and
strong anti-noise ability of H-KLD.

In Fig. 4, three models are used to visualize the uncertainty
distributions on RMFRD to evaluate the learning ability to
clean and noisy samples. Specifically, DULcls tends to assign
large variance to masked faces. DUL+Mag makes the overall
variance of masked face smaller and more concentrated.

Table IV. Performance and Robustness in Ablation Study.

Methods
MFV MFI Noise

RMFRD M-CALFW MFR2 RMFRD M-CFP FP
DUL-cls 69.43 79.66 90.78 51.51 62.42

MagFace 70.97 81.50 92.36 52.78 63.68

DUL+Mag 72.93 83.51 94.21 54.83 66.23
MaskDUL 80.23 90.02 99.05 62.36 73.15

But the optimization of the intra-class distribution is still
necessary. MaskDUL further limits the variance of masked
face to a low level, but also retains some true noises with large
variance, thus distinguishing the high-recognizable masked
face from the true noises in the intra-class distribution.

Masked Face
in RMFRD

Fig. 4. Modules effectiveness in ablation study.

V. CONCLUSION
In this work, we propose a novel two-stream convolutional

network with a Hard Kullback-Leibler Divergence (H-KLD)
and magnitude-based module, called Masked Face Data Un-
certainty Learning (MaskDUL). MaskDUL explores sample
uncertainty and intra-class distribution learning in MFR,
which enables the model to learn more accurate uncertainty
representations and construct a more compact intra-class
distribution in MFR. Finally, comprehensive experiments on
MFR tasks prove the advancement of our MaskDUL.
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