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Active Selection of Data for Training Model

1. Calculate the abnormality   , mean  and variance  of 
the Riemannian distances.

2. Under the assumption that is chi-square distributed, select the 
source patient whose Riemannian distance  has a significant probability 
of 0.75 or greater.
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Raw EEG to Feature Vector

Method
Before Centroid Alignment After Centroid AlignmentEpilepsy

- a group of neurological disorder, characterized by repeated seizures. 
- The recurrent occurrence of seizures caused by excessive discharge 

from cerebral cortex neurons independently without any obvious rhythm.
Motivation

- Epileptic seizure event detection in long electroencephalogram (EEG) 
recordings is a time-consuming, tedious and error-prone process. 

- needs expert practitioner’s opinion to detect the seizure event correctly 
which is expensive. 

Research Goal
• Epileptic seizure detection from long EEG recordings of epileptic 

patients using machine learning based approach.
Focus A solution to mitigate the subject-dependent nature of seizure data 
in case of designing seizure detection model from EEG recordings. 

Riemannian Manifold

Seizure Event in EEG recordings 
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• It has ability to unfold the hidden 

structure of complex brain signal 
organization in non-Euclidean space. 

• Riemannian distance could measure 
the similarity among EEG data of 
different patients.

• Riemannian Distance between  and : A B
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Centroid Alignment and Tangent Space Mapping
Centroid Alignment is a transfer learning 
technique on a manifold that minimizes 
the marginal probability distribution shift of 
different domains and enables transfer 
from multiple source domains.

Tangent space mapping (TSM) is a nonlinear mapping of the covariance 
matrices to the linear tangent space of a Riemannian manifold, converts them to a 
transformed vector form as a feature.
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Validation: Leave-one-patient-out
Classifier: Support Vector Machine (SVM)

Preprocessing
❖ FIR bandpass filtering 4-35 Hz and z-score normalization of each Channel
❖ Non-overlapping Segmentation (2 seconds) of continuous EEG 

Tab2: Performance of the model’s components

Tab3: Comparison with state-of-the-art 

Tab1: Patient-wise Performance

Dataset: recorded by Children’s Hospital Boston–MIT, 23 pediatric 
patients, number of common channels: 23,   Sampling frequency: 256 Hz
https://www.physionet.org/content/chbmit/1.0.0/

Our Approach 

① Calculate Covariance Matrices in Spatial (SCM) and Temporal (TCM) domain
② Selection of Training data based on Target Patients Riemannian Mean
③ Applied Centroid Alignment on Spatial Covariance Matrices 
④ Applied Tangent Space Mapping to the SCM and TCM
⑤ Concatenate the output vectors from Tangent Space Mapping 
⑥ Train Support Vector Machine Model for the classification 

• Selection of source patient data for training helps to tune model for target patient. 
• Low performing patients are quite different from the majority of the patients. 
• There is a scope to improve the Specificity in future for practical implementation. 

Inter patient Riemannian distance matrix 

http://www.webmd.com/epilepsy/ss/slideshow-epilepsy-overview

