

patients using machine learning based approach.

ICASSP 2023, 4 - 10 June @Rhodes Island, Greece **Active Selection of Source Patients in Transfer Learning for Epileptic Seizure Detection using Riemannian Manifold** Toshiki Orihara¹, Kazi Mahmudul Hassan¹, and Toshihisa Tanaka¹

¹Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan

Centroid Alignment and Tangent Space Mapping Before Centroid Alignment After Centroid Alignment HP1-F7 F7-T7 F7-T7 F7-T7 F7-T7 F7-T7 F7-01 F7-64 F7-05 F7-17 FP1-F7 F7-T7 F7-T7 F7-T7 F7-T7 F7-T7 F7-77 F7-73 F3-C3 F3-C3 F3-C3 F3-C3 F3-C3 F3-C3 F4-C4 F7-C4 F4-C4 F7-C4 F7-C4 F4-C4 F7-C4 F7-C7 Centroid Alignment effects on SCM

Tangent space mapping (TSM) is a nonlinear mapping of the covariance matrices to the linear tangent space of a Riemannian manifold, converts them to a

 $\boldsymbol{P} = \text{upper}\left(\log\left(\boldsymbol{M}^{-\frac{1}{2}}\boldsymbol{C}\boldsymbol{M}^{\frac{1}{2}}\right)\right)$

Result

Dataset: recorded by Children's Hospital Boston-MIT, 23 pediatric patients, number of common channels: 23, Sampling frequency: 256 Hz

> Validation: Leave-one-patient-out **Classifier:** Support Vector Machine (SVM)

Tab2: Performance of the model's components

Method	AUC(%)	Acc(%)	Sen(%)	Spe(%)	
SCM	89.8	81.9	86.4	77.2	
SCM+CA	91.4	85.4	86.8	83.9	
(SCM+TCM)+CA	92.4	85.3	85.7	84.8	
AL+(SCM+TCM)+CA	93.1	86.1	86.8	85.4	

Tab3: Comparison with state-of-the-art

Work	AUC	Acc.	Sen.	Spe.
Single-channel EEG+				
wavelet features + SVM	-	96.87	72.99	98.13
(Janjarasjitt, 2017)				
DWT + CNN + BLSTM	90.82	97.51	83.11	97.58
(Liu et al., 2022)				
DWT + 1-D CNN	_	87	84.40	_
(Halawa et al., 2022)				
Multiscale CNN		96.74	75.32	95.96
(Thuwajit et al., 2022)	_	± 4.04	± 20.46	± 4.38
Proposed Model	93.1	86.1	86.8	85.4

Observation

Selection of source patient data for training helps to tune model for target patient. Low performing patients are quite different from the majority of the patients. There is a scope to improve the Specificity in future for practical implementation.

Acknowledgment

This research work is supported by CREST (JPMJCR1784) of the Japan Science