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ABSTRACT
A novel matrix completion problem is considered herein:
observations based on fully sampled columns and quasi-
polynomial side information is exploited. The framework
is motivated by quantum chemistry problems wherein full
matrix computation is expensive, but partial computations
only lead to column information. The proposed algorithm
successfully estimates the row-space of a true matrix given a
priori knowledge of the true matrix. A theoretical error bound
is provided, which captures the possible inaccuracies of the
side information. This work designs the first provable matrix
approximation algorithm using just column samples. The
proposed algorithm is validated via simulations which enable
the characterization of the amount of information provided
by the quasi-polynomial side information.

Index Terms— Matrix approximation; high-rank matrix
completion; quasi-polynomial; row space information.

1. INTRODUCTION
Low rank matrix approximation has been successfully applied
to a variety of applications including recommendation sys-
tems, quantum state tomography, matrix regression and gene-
expression [1–5]. Classical low-rank matrix approximation
has assumed access to randomly collected entries of the true
matrix. Recent work in computer vision, bioinformatics and
quantum computing suggest that alternative sampling strate-
gies may be more relevant [6–11]. For example, samples
in [10] are concentrated around the main diagonal of a matrix
and [11] allows for the sampling of complete columns and
rows as well as some additional random samples. To accom-
modate these sampling approaches, new matrix reconstruc-
tion methods have been developed.

The current work considers column samples coupled with
side information on the rowspace of the true matrix versus the
typical random sampling. The sampling strategy is motivated
by problems in quantum chemistry [12, 13], where full ma-
trix computation is expensive and only full columns can be
computed. While [11] shares some features of our proposed
framework (column samples), it also necessitates fully sam-
pled rows as well as additional random samples – thus, [11]
cannot be applied to our quantum chemistry problem. To the
best of our knowledge, matrix approximation with column
samples and rowspace information as captured by a quasi-
polynomial structure has not been previously investigated.

Contributions. We propose a new framework for matrix ap-
proximation given only a few columns and quasi-polynomial
side infromation. The proposed algorithm, dubbed quasi-
polynomial matrix approximation (QPMA), successfully in-
tegrates a known quasi-polynomial structure of a true matrix.
A theoretical additive error bound is provided and shown
to be comparable to that achieved by conventional matrix
approximation methods. Simulation studies validate that the
estimated rowspace information provided by QPMA provides
useful side information and enables the characterization of
how much information is provided via the quasi-polynomial
structure.
Motivating application. For further context, we provide ad-
ditional details on the n×m dimensional ground truth matrix
M motivated by applications in quantum chemistry [12, 13].
Each column of the ground truth matrix M[:,i], i ∈ [m] con-
sists of n eigenvalues of a Hessian calculated at one point
on the reaction coordinate, s. These eigenvalues are neces-
sary for calculating chemical reaction rate coefficients with
sophisticated rate theories. However, obtaining the Hessian
matrix at each point is computationally expensive. In our
prior work [13, 14], we showed that eigenvalue information
in M has a quasi-polynomial expression along the rows. We
further showed that low rank matrix completion can be em-
ployed to approximate M. Our goal herein is to approximate
the matrix M given only a few columns (i.e., eigenvalues cal-
culated at a few points along the reaction coordinate) with the
quasi-polynomial information and reduce the overall compu-
tational cost.

2. PROBLEM FORMULATION AND ALGORITHM
2.1. Problem setting

Let M ∈ Rn×m be the true matrix of rank k. Herein, we
consider the problem of obtaining a rank-r approximation of
M from d randomly sampled columns, where r ≤ d ≤ k,
motivated by the the quantum chemistry application, wherein
the actual matrices are high rank. Motivated by the chemical
reaction rate processes in [12], we model quasi-polynomial
structure, of degree l, of the true matrix M as follows,

M = QS+E, (1)

where Q ∈ Rn×l is an unknown polynomial coefficient ma-
trix; S ∈ Rl×m encodes the known polynomial information



matrix; and E is the perturbation/noise matrix. Specifically,
given a vector of reaction coordinate values, s = [s1, . . . , sm]
and the polynomial degree l, the polynomial side informa-
tion is assumed to be captured by each i-th row of S pos-
sessing i − 1 degree of polynomial with respect to s, where
i ∈ [1, l + 1]. For example, i-th row of S has the form of
S{i,:} = [si−1

1 , . . . , si−1
m ]. Notice from (1) that the true ma-

trix M is not purely polynomial.
This work considers the setting where a few columns of

M are sampled, which we formally define next. Let C =
{c1, . . . , cd} ⊂ [m] denote the set of sampled column indices
. We assume that each column is sampled independently from
all other columns. Then the column sampling operator Ψ ∈
{0, 1}m×d is given by Ψ

def
= IC , where I is the identity matrix

of dimension m and IC denotes the sub-matrix of I formed
by columns indexed in the set C. Thus, the observed matrix,
A ∈ Rn×d can be equivalently expressed as A = MΨ.

Lastly, we define the SVD of M and QS as

M
SVD
= UΣVT = UMΣMVT

M︸ ︷︷ ︸
rank-r-approximation

+UM,⊥ΣM,⊥V
T
M,⊥︸ ︷︷ ︸

remainder

.

and QS
SVD
= UQSΣQSV

T
QS︸ ︷︷ ︸

rank-r-approximation

+UQS,⊥ΣQS,⊥V
T
QS,⊥︸ ︷︷ ︸

remainder

.

2.2. Quasi-Polynomial Matrix Approximation Algorithm

We next present the optimization strategy for Quasi Polyno-
mial Matrix Approximation (QPMA). A natural optimization
problem that takes into account the structural information pro-
vided by QS as well as the desired rank r approximation of
M is given by

min
Q,X

∥A−XΨ∥2F subject to (2)

∥A−QSΨ∥2F ≤ ∥E∥2F ∥Ψ∥2F and rank(X) ≤ r.

Notice that while sufficient information about the column-
space of M is provided through A, it is almost impossible
to estimate the row-space without the prior quasi-polynomial
structure, represented by QS.

The above optimization problem is NP-hard, in general,
due to the rank constraint [15]. Although there is a plethora of
literature that attempts to circumvent the computational hard-
ness – either through convex relaxation [16–18] or through
non-convex approaches [19], these approaches are still either
computationally or statistically sub-optimal respectively. Fur-
thermore, it is not clear if these approaches can be easily mod-
ified to leverage the quasi-polynomial side information. Fi-
nally, we note that the above optimization problem does not
explicitly leverage the row- and column-space information of
M. We observe that if the row- and column-space informa-
tion of M, i.e., UM and VM were known, a natural factorized

Algorithm 1 Proposed QPMA

1: Input: A ∈ Rn×d, S ∈ Rl×m

2: Parameters: A target rank r, Degree of polynomial l,
Step size η, # of iteration T1 and T2 for (4) and (5)

3: Initialization: Randomly generate Q̂1 from N (0, 1)
4: Algorithm:
5: Column-space estimation
6: Do rank-r SVD of A as A = UAΛAV

T
A

7: Row-space estimation
8: For t ∈ [T1], do
9: Q̂t+1 = Q̂t − η

(
A− Q̂tSΨ

)
(SΨ)

T

10: With Q̂ ≡ Q̂T , do rank-r SVD of Q̂S as Q̂S =
ÛQSΛ̂QSV̂

T
QS

11: Matrix approximation
12: Using UA and V̂QS , for t ∈ [T ], do

Ẑt+1 = Ẑt − ηUT
A

(
A−UAẐtV̂

T
QSΨ

)(
V̂T

QSΨ
)T

Obtain Ẑ = ẐT and complete M̂ = UAẐV̂
T
QS

13: Output: M̂ = UAẐV̂
T
QS .

approach [20] that relaxes (2) is given by

min
Z,Q

∥∥A−UMZVT
MΨ

∥∥2
F

(3)

subject to ∥A−QSΨ∥2F ≤ ∥E∥2F ∥Ψ∥2F .

However, since we do not know UM and VM , they need
to be estimated. QPMA is comprised of three stages: (i) es-
timating the column space of M; (ii) followed by estimat-
ing the unknown polynomial coefficient matrix, Q, and sub-
sequently estimating the row-space of M by leveraging the
quasi polynomial structure; and (iii) finally preforming matrix
approximation with the constrained row- and column-space
approximations obtained previously. The complete algorithm
is summarized in Algorithm 1.
Column space estimation of M. Notice that we are only
given a subset of the columns of M. We argue that as long
as d is “large enough”, and the columns are sampled indepen-
dently, the top-r left singular vectors of the observed matrix
A provide a good estimate of the (r-dimensional) column-
space of M. The estimate is given by the rank-r SVD as
A

r-SVD
= UAΣAV

T
A.

Row space estimation of M. Next, we leverage the side in-
formation to estimate the row-space of M. Recall A does not
provide sufficient information for row-space of M. Hence,
we estimate the unknown polynomial coefficient matrix, Q
as follows

Q̂ = argmin
Q̄

∥∥A− Q̄SΨ
∥∥2
F
. (4)

This is a standard regression problem, which can be effi-
ciently solved by gradient descent [21]. With Q̂ obtained



by solving (4), we can estimate the row-space of M, V̂QS ,
through a rank-r SVD of Q̂S as Q̂S = ÛQSΣ̂QSV̂

T
QS .

Rank-r matrix approximation. Finally, with UA and V̂QS

obtained from previous steps, we can perform the low-rank
approximation as follows,

Ẑ = argmin
Z̄

∥∥∥A−UAZ̄V̂
T
QSΨ

∥∥∥2
F
. (5)

This final optimization is also a regression problem, which
can also be solved by gradient descent. This concludes the
algorithm.

3. MAIN RESULT AND PROOF SKETCH
To provide the spectral error bound for QPMA, we require the
following preliminaries:

Definition 1 (Incoherence). [15] Let X be a n×m matrix of
rank r and X

r-SVD
= UΣVT. Let ui be the i-th row of U and

vj be the j-th row of V. Then, the incoherence of X is given

by µ̄(X) = max
(
maxi∈[n]

n
r ∥ui∥2,maxj∈[m]

m
r ∥vj∥2

)
.

For clarity, we define µ
.
= µ̄(M) and µ̂

.
= µ̄(M̂) for the

ground truth and its estimate, respectively. We denote σi(QS)
and σj(M), 1 ≤ i, j ≤ m, the i-th and j-th largest singular
values of QS and M respectively which enable the following
assumption.
Assumption 1 : There exists a δ > 0 such that δ =
min {mini,j |σi(QS)− σj(M)|,mini σi(QS)} for 1 ≤ i ≤
r, r ≤ j ≤ m.

Theorem 1. Assume there exists a δ > 0 that satisfies the
Assumption 1 and that d columns are sampled uniformly
at random from the underlying ground truth, M. Then,
if d ≥ c1max

{
µr ln r, µ̂2r2 ln r

n

}
, with probability at least

1− c2r
−10 we have

∥M− M̂∥
2

2

∥M∥22
≤

4m

d

[
27(n+ 2m)

d

σ2
r+1(M)

σ2
1(M)

+
2
√
2∥E∥F
δ

+
72∥E∥2F

δ2

]

where c1 and c2 are positive constants.

Proof Sketch: The proofs and additional lemmas are provided
in the extended version of this work [22]. The proof fol-
lows from applying large-deviation style results from random
matrix theory [23] to ensure that the loss-function in (5) is
well-behaved as long as we sample a sufficient number of
columns, followed by a careful application of Wedin’s the-
orem [24]. ⊠
Discussion. The first term in Theorem 1 represents the unre-
coverable error due to the low rank approximation of a higher
rank matrix. As M is only quasi-polynomial (E ̸= 0), the

remaining terms capture the incomplete nature of the side in-
formation. Since rank(M) = k ≫ r and rank(QS) = l ≥
r, we have δ = σr(M−E) − σr+1(M). As δ measures
effective eigengap of M, we interpret δ

∥E∥F
as a signal-to-

noise ratio (SNR). Thus, we can describe our approximation
as scaling with Cmax(1/SNR, (1/SNR)2). We also observe
that QPMA suffers a multiplicative factor of O(m/d) coupled
with the best rank-r approximation error, that is ∥M−Mr∥ =
σr+1(M). We note that CUR+ [11] induces a multiplica-
tive factor of O(m

√
m/d), and thus our bound is competitive

with respect to scaling. Note that the error bound is quanti-
fied by the informativeness of side information, i.e., the bound
gets tighter when ∥E∥2F is small. We provide a more detailed
discussion and other lemmas in the longer version of this pa-
per [22].

4. SIMULATIONS
All numerical results are averaged over 100 independent runs.
We generate the entries of the polynomial coefficients matrix
Q ∈ Rn×l independently from N (0, 1). The polynomial ba-
sis matrix S ∈ Rl×m is constructed using arbitrarily sam-
pled reaction coordinate values s. As in [12], the values of
s are arranged in ascending order after uniformly sampling
s = [1 + 0.01 ∗ [m]]. To control the rank of the underly-
ing ground truth matrix, we generate the perturbation ma-
trix E as UQSR1V

T
QS + UQS,⊥,[:,1:k−l]R2V

T
QS,⊥,[:,1:k−l],

where QS
SV D
= UQSΣQSV

T
QS+UQS,⊥ΣQS,⊥V

T
QS,⊥. The

entries of R1 ∈ Rl×l and R2 ∈ Rk−l×k−l are generated
i.i.d. from N (0, σ) with σ = 0.0001. With this, we ob-
tain the rank-k ground truth matrix, M = QS+E. We
use the normalized mean squared error (NMSE), defined as

NMSE(M̂,M) =
∥M−M̂∥F

∥M∥F
to measure the performance.

5 10 15 20 25 30
# of sampled true columns (d)
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10 2

10 1

100

N
M

SE

QPMA
CUR-H
CUR-L
CUR-S

Fig. 1. The comparison of NMSE between QPMA and var-
ious types of CUR+ versus # of true sampled columns (d)
when k = 30 and l = 5.

We compare the performance of QPMA with CUR+ [11]
although we emphasize that CUR+ requires access to a sub-
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Fig. 2. The performance of QPMA corresponding to the same
NMSE of CUR-H with fixed d = 5 and varying rows.
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Fig. 3. The sensitivity to noise for QPMA and CUR+ algo-
rithms. The parameters are set by d = 5, l = 5 and k = 100.

set of rows, columns and a few additional entries to work. To
provide a fair comparison applicable to our setting, we im-
plement three types of CUR+, named CUR-L (CUR with low
# samples), CUR-S (CUR with same # samples) and CUR-
H (CUR with high # samples, which is the default setting).
QPMA observes d columns, CUR-L observes d/2 rows and
columns, CUR-S observes d/2 rows and columns and an ad-
ditional d2/4 entries, and CUR-H observes d columns and
rows in total. Thus, compared to QPMA, CUR-L observes
d2/4 fewer distinct entries, CUR-S observes the same num-
ber of entries, and CUR-H observes nd− d2/4 more distinct
entries.

We first investigate the effect of increasing the number of
observed columns; the true rank is k = 30, and σ = 0.0001.
The results are provided in Fig. 1. As expected, the NMSE
for all algorithms reduces as we increase the number of ob-
served samples. Furthermore, even though CUR-H observes

many more entries than QPMA, the performance is compara-
ble, and QPMA significantly outperforms CUR-S and CUR-
L. Additionally, in the low-sample regime, QPMA has the
lowest reconstruction error; thus the side information is be-
ing well leveraged by QPMA. We next attempt to answer the
following question: how much (row-space) information is be-
ing captured by the quasi-polynomial side information1. To
this end, for both QPMA and CUR-H, we fix the number of
observed columns to d = 5. We vary the observed number
of rows for CUR-H that attains the same numerical error as
QPMA. The results are provided in Fig. 2. Notice that when
the the degree of the quasi-polynomial side information is
l = 3, for both values of rank, k, CUR-H requires access
to at least 5 − 6 rows to match the performance of QPMA.
Additionally, when l = 5, CUR-H requires at least 8−9 rows
to match the performance of QPMA. This trend confirms our
intuition that as the underlying degree (and hence the “good-
ness” of the side information) increases, the performance of
existing vanilla algorithms degrades. Finally, we illustrate the
sensitivity to noise, E for all algorithms in Fig. 3. Notice that
the performance of all algorithms gracefully degrade with in-
creasing noise.

5. CONCLUSIONS
In this work, we provided a novel framework for matrix ap-
proximation under the assumption that one can only collect
fully sampled columns of the underlying matrix. Further-
more, one has access to side information with regards to the
rowspace that is quasi-polynomial. This framework is moti-
vated by a problem in quantum chemistry; our goal is to sig-
nificantly reduce computational complexity of chemical reac-
tion rate computation. We have further proposed the quasi-
polynomial matrix approximation (QPMA) algorithm which
successfully integrates a known quasi-polynomial structure of
a true matrix with a few fully sampled columns. A bound on
the approximation error is derived which clearly shows the
trade off between the side information and how close the true
matrix is to being fully polynomial. We showed that QPMA
showed a competitive multiplicative factor of O(m/d) cou-
pled with the best low rank approximation error. QPMA is
compared to modern row and column sampled approaches
[11]; numerical simulations show that QPMA can capture
more than about 2 times information of true rows compared
to state-of-art method.
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