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Overview .

Federated intelligent terminals for automatic
monitoring of stuttering ¢

Contribution

® The first time that FLI! has been
, - applied to stuttering scenarios
PN m,]ff ® Verify that XGBoost-based FL has

e 1D N st s a1 comparable performance with

e centralised learning for stuttering
classification

® Introduce Shapley values to
measure changes in feature

Importance

Make Decision

5 Shapley values

Fig.1 The framework of federated intelligent terminals [1] FL(Federated Learning)



Motivation

® Monitoring of stuttering is crucial to speech therapy.

® Evaluation of stuttering by speech therapists can be
Influenced by too much manual subjective
Intervention
» Comprehensive evaluation in various contexts is
required.
» The therapist's evaluation might be influenced by
many factors
O communication situation
O psychological factors
O linguistic complexity
O personal subjectivity

® Problem of data security.

So we propose the federated

Intelligent terminals for
automatic monitoring of
stuttering speech in different
contexts!
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Method-Data and Explainable

Data Preparation

® The experimental data are taken from
the Kassel State of Fluency (KSoF)
corpus.!tl

Train: 23 speakers

Devel: 6 speakers

Sample number: 3,471

Length of each audio: 3-second

Classes: 8

Feature: 4,096 dimensions

extracted by auDeep.
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Shapley[2] value Tool

Fairly evaluate feature contributions by *
assigning each feature a numerical value to
represent its impact.

Table.1 The Distribution of annotations in KSoF dataset

Stuttering Labels KSoF [%]
Block (Bl) 20.74
Prolongation (Pro) 12.02
Sound Repetition (Snd) 14.76
Word/Phrase Repetition (Wd) 3.88
Modified Speech Technique (Mod) 2475
Interjection (Int) 24.44
No Dysfluencies (Nd) 12.97
Unintelligible (Ul) 5.77

[1] The data can be accessed by request from the Kassel State of Fluency (KSoF) dataset at

» » https://zenodo.org/record/6801844

. models.https://shap.readthedocs.io.

[2] SHAP (SHapley Additive exPlanations) is a game-theoretic method to explain the output of ML


https://zenodo.org/record/6801844
https://shap.readthedocs.io/

Method-Centralised model . v
XGBoost Ensemble Learning Model Object Function: "
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Method-Federated model

The framework is based on FATE[1].

The XGBoost-based horizontal FL steps:

a) Clients hold different training samples and train
the ensemble tree model.

b) For each feature, the client accumulates the
gradient of its samples’ loss.

c) Clients send the gradient to the server.

d) The server aggregates the gradients from the
clients and finds out the best weights.

e) The server broadcasts the best weights to clients.

[1] FATE (Federated Al Technology Enabler) supports the FL

Algorithm 1: Implementation of XGBoost-based
horizontal FL

Input: N, the number of the clients, where the ith
client holds n; instance spaces
Input: d, feature dimension
Input: z, the dataset matrix
Qutput: the best split point for the current instance
space
1 /*On clients*/
2 for each clienti = 1to N — 1 do
3 Propose each feature’s values by percentiles to
form feature bins
for each feature bin do
5 Accumulate the g, h of all sample spaces in
this feature bin to get GG, H
6 end
7 end
8 /*On federated server */
9 for each clienti = 1to N — 1 do
10 for each feature m = 1tod — 1 do

11 g1 = g; + Decrypt(G feature bins)
12 h; = h; + Decrypt(H feature bins)
13 gr=9g—gq;, h, =h—Hh
14 Score =
1197 g2 g°
Max(Score,g[h;jrA B s el — )

15 end

16 end

17 Broadcast the m,,; and the corresponding threshold
value to all clients to split

= architecture, as well as the secure computation and development
= of various ML algorithms.https://github.com/FederatedAl/FATE



https://github.com/FederatedAI/FATE
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XGBoost is optimal with 50 trees and depth 5
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P » P labels between centralised learning and federated learning.



Conclusion

FL has considerable privacy-preserving
advantages over centralised learning

Offered a valid verification and basis for the FL
paradigm on automatic monitoring of stuttering is

provided

Shapley values can fairly evaluate the contribution

of features
Future work: lightweight models and the
deployment of FITs models on devices
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(a) The contribution of significant auDeep_features from all class
predictions for the XGBoost model (average feature importance).
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Fig.4 The features sorted by the mean of Shapley values for all
class predictions



