

IEEE

Federated Intelligent Terminals Facilitate Stuttering Monitoring

Yongzi Yu¹, Wanyong Qiu¹, Chen Quan¹, Kun Qian^{1*}, Zhihua Wang², Yu Ma¹, Bin Hu^{1*}, Bjoern W. Schuller³ and Yoshiharu Yamamoto²

School of Medical Technology, Beijing Institute of Technology, Beijing, China
 Educational Physiology Laboratory, The University of Tokyo, Japan
 GLAM -- Group on Language, Audio, & Music, Imperial College London, UK

Overview

Federated intelligent terminals for automatic monitoring of stuttering

Fig.1 The framework of federated intelligent terminals

Contribution

- The first time that FL^[1] has been applied to stuttering scenarios
 - Verify that XGBoost-based FL has comparable performance with centralised learning for stuttering classification
- Introduce Shapley values to measure changes in feature importance

Motivation

• Monitoring of stuttering is **crucial** to speech therapy.

- Evaluation of stuttering by speech therapists can be influenced by too much manual subjective intervention
 - Comprehensive evaluation in various contexts is required.
 - The therapist's evaluation might be influenced by many factors
 - **D** communication situation
 - psychological factors
 - Iinguistic complexity
 - personal subjectivity
- Problem of data security.

So we propose the federated intelligent terminals for automatic monitoring of stuttering speech in different contexts!

Method-Data and Explainable

Data Preparation

- The experimental data are taken from the Kassel State of Fluency (KSoF) corpus.^[1]
 - > Train: 23 speakers
 - Devel: 6 speakers
 - Sample number: 3,471
 - Length of each audio: 3-second
 - Classes: 8
 - Feature: 4,096 dimensions extracted by auDeep.

Shapley[2] value Tool Fairly **evaluate feature contributions** by assigning each feature a numerical value to represent its impact.

Table.1 The Distribution of annotations in KSoF dataset

Stuttering Labels	KS0F [%]
Block (Bl)	20.74
Prolongation (Pro)	12.02
Sound Repetition (Snd)	14.76
Word/Phrase Repetition (Wd)	3.88
Modified Speech Technique (Mod)	24.75
Interjection (Int)	24.44
No Dysfluencies (Nd)	12.97
Unintelligible (Ul)	5.77

[1] The data can be accessed by request from the Kassel State of Fluency (KSoF) dataset at <u>https://zenodo.org/record/6801844</u>

[2] SHAP (SHapley Additive exPlanations) is a game-theoretic method to explain the output of ML models.<u>https://shap.readthedocs.io.</u>

XGBoost Ensemble Learning Model

Positive:

- ✓ Good at parallel computing
- ✓ Highly scalable
- ✓ Uses minimal resources for

algorithmic optimization

Has flexible portability and precise
 libraries

Object Function:

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t)}\right) + \sum_{i=1}^{t} \Omega(f_i)$$

$$\approx \sum_{i=1}^{n} \left[g_i f_i(x_i) + \frac{1}{2}h_i f_t^2(x_i)\right] + \Omega(f_i)$$

i refers to the ith sample, $\hat{y}_i = \sum_{k=1}^{K} f_k(x_i)$. $\underline{g_i} = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$ and $\underline{h_i} = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$ the first order gradient the second order gradient

Method-Federated model

The framework is based on **FATE**[1].

The XGBoost-based horizontal FL steps:

- a) Clients hold different training samples and train the ensemble tree model.
- b) For each feature, the client accumulates the **gradient** of its samples' loss.
- c) Clients send the gradient to the server.
- d) The server aggregates the gradients from the clients and finds out the best weights.
- e) The server broadcasts the best weights to clients.


```
Algorithm 1: Implementation of XGBoost-based
horizontal FL
   Input: N, the number of the clients, where the i^{th}
            client holds n_i instance spaces
   Input: d, feature dimension
   Input: x, the dataset matrix
   Output: the best split point for the current instance
              space
 1 /*On clients*/
2 for each client i = 1 to N - 1 do
       Propose each feature's values by percentiles to
 3
         form feature bins
       for each feature bin do
 4
            Accumulate the q, h of all sample spaces in
 5
             this feature bin to get G, H
       end
 6
7 end
 8 /*On federated server */
 9 for each client i = 1 to N - 1 do
       for each feature m = 1 to d - 1 do
10
            q_l = q_l + \text{Decrypt}(G \text{ feature } bins)
11
            h_l = h_l + \text{Decrypt}(H \text{ feature } bins)
12
           g_r = g - g_l, \ h_r = h - h_l
13
            Score =
14
             Max(Score, \frac{1}{2} \left[ \frac{g_l^2}{h_l + \lambda} + \frac{g_r^2}{h_r + \lambda} - \frac{g^2}{h + \lambda} \right] - \gamma)
15
       end
16 end
17 Broadcast the m_{opt} and the corresponding threshold
     value to all clients to split
```

Result

$$UF_1 = \frac{2 * TPc}{2 * TPc + FPc + FNc}$$

$$UAR = \frac{\sum_{i=1}^{N_c} Recall_i}{N_c}$$

-60

-50

-40

-30

-20

·10

•0

Evaluation matrix: UAR and UF1

Predicted label											Predicted label								
	840	40	TH	\$	Mod	Snd	NO	j.	-0		Pro	40	Int	\$	Mod	Snd	NO	J.	
UI-	0.0	55.0	5.0	5.0	5.0	5.0	0.0	25.0	0	UI•	0.0	57.9	5.3	10.5	0.0	0.0	0.0	26.3	
Wd-	11.8	41.2	5.9	5.9	11.8	11.8	11.8	0.0	-10	Wd-	11.8	64.7	0.0	0.0	11.8	11.8	0.0	0.0	
Snd-	4.0	50.0	6.0	6.0	6.0	24.0	4.0	0.0	-20	Snd-	4.3	52.2	6.5	4.3	6.5	23.9	2.2	0.0	
1od-	1.0	19.1	2.6	9.3	64.9	3.1	0.0	0.0	-30	DoM II	0.6	26.9	2.3	8.8	58.5	2.3	0.6	0.0	
Bl-	5.1	48.0	0.0	34.7	6.1	4.1	0.0	2.0	-40	label Bl-	4.3	45.7	4.3	32.6	5.4	7.6	0.0	0.0	
Int-	10.5	39.5	18.4	7.9	22.4	1.3	0.0	0.0	50	Int-	7.6	37.9	28.8	4.5	19.7	1.5	0.0	0.0	
Nd-	4.1	65.8	4.1	5.4	16.5	2.2	0.9	0.9	-50	Nd-	3.4	60.3	5.4	5.8	20.3	3.1	0.7	1.0	
Pro-	6.0	50.7	6.0	22.4	10.4	4.5	0.0	0.0	- 60	Pro-	5.2	50.0	5.2	20.7	8.6	10.3	0.0	0.0	

Fig.2 Model performance variation (UAR and UF_1 in [\%]) between centralised learning and federated learning XGBoost is optimal with 50 trees and depth 5 FL is optimal with 50 trees and depth 3

XGBoost confusion matrix (a)

Pro- 6

Nd-

(b) FL confusion matrix

Fig.3 Normalised confusion matrix (in [\%]) of true labels and predicted labels between centralised learning and federated learning.

Conclusion

- FL has considerable **privacy-preserving** advantages over centralised learning
- Offered a valid verification and basis for the FL paradigm on automatic monitoring of stuttering is provided
- Shapley values can fairly evaluate the contribution of features
- Future work: lightweight models and the deployment of FITs models on devices

(a) The contribution of significant auDeep_features from all class predictions for the XGBoost model (average feature importance).

(b) The contribution of significant auDeep_features from all class predictions for the FL model (average feature importance).

Fig.4 The features sorted by the mean of Shapley values for all class predictions