Untrained graph neural networks for denoising
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Why graph signal denoising? Graph Convolutional Generator (GCG) Analysis of the denoising capability

» Data is becoming heterogeneous and pervasive » The GCG includes the graph topology via vertex-based convolutions » Consider a simplified 2-layer GCG denoted as 7g(H
= Large amounts of data are propelling the development of data-driven methods — The graph convolution operation performed via fixed GFs H(!) ¢ RNV*N = With expected square Jacobian of fg(H) dlagonallzed as X = Wxzw/'

. . . . . . . aM
» Growing complexity of modern systems & networks also demands new methods » The output of a GCG with L layers is given by the following recursion — Assuming that Xo is a bandlimited graph signal and ¢ is drawn from 5
= Popular approach: 1) Interpret the data as signals defined on a graph; and v HOY(-1) g0 P
= 2) Harness the graph topology to deal with irregular structure (e.g. via graph NNs) n - R%U((L Nald) ), for £=1,.. [—
y'- =HYYS U

» Key: establishing a relation between the K leading eigenvectors V- and W
= Feasible through the expectations A = E[A] and X = E[X]

— The fixed graph filters H\) capture prior knowledge of x A=VAV' <« A=VAV'
= The learnable parameters e ¢ RFWUXF(@ mix the columns 0 o
Ly : A o7 Ny X=WZW' — X =WzwW'
Brain net.work Soialf et\v;ork Home automation neto/rk Features of the architecture
» The GCG layer is a generalization of the GCNN layer Theorem

» Problem: data is corrupted with noise that may render the data useless Let xg be a K-bandlimited graph signal spanned by V. For N > N, s, the error for each

iteration t of SGD with stepsize n is bounded as
» The GCG addresses important limitations of the previous GCNN 2\t 2\t
—fo,. . (H)||> < ((1 — o(1 —
= The depth of GCG and the radius of H are independent X0 @(f)( M2 < (( 1ok) + o~ o) ) Xoll2

Graphs, graph signals, and GNNs — Avoids over-smoothing problem N , .
. | N +eIXlz+ | (1 = noB)t — 1)2(w] n)2,
» Graph G = (V, 8) with N nodes and adjacency A € R~ T l Graph Decoder (GDec) \ i
_ raph Decoder ec
- 4 = Proximity between i and iy Graphbecoder(GDe0 [

¥O — (A YD) — Ayt-Dg®)
» This work: design non-linear NN architectures to remove the noise from graph signals

» Define a signal x € R on top of the graph T . l » The GDec includes the graph topology via graph upsampling
= x; = Signal value at node / - T L = We need to design the graph upsampling operators Ul c RN“)XN(H) » The first term models the signal error and the eigenvector misalignment
> Graph filters are defined as H — Z h AT | o | | » The third term captures the error resulting from learning the noise
P ' > The output of a GDec with L layers is given by the following recursion — X is learned faster than noise so the error decreases for the first iterations
> We represent a graph NN (GNN) as a parametric function fg(Z|G) - rNOXFO) _ N YO = ReLUWUYYE-1OW), fore=1,.., L—1 = |f too many iterations are considered the noise is learned and the error increases
= Focus on mappings from fixed input Z to x y(L): ubylt=1)g(b)
1 v » With Y(O) = Z, a GNN with L layers is given by — U") increases size of intermediate signals Y1) since N(®) < N
NOI o B M vy — T(ff()g) {y(€—1),g} 1<r<L Z oo 12X YS TOR=T ;u; > Graph“s are S”BM w.ith N.: 64 r?odes and K = 4 communities
- /:\!,P_ v _ g(g) (Y(_E)) {<p<1 = “Signal” (xg) is a piece-wise constant signal
Il If ’ — 7 = I : . :
o _ _ _ — i 1 . » The results show that the signal X is fitted faster than the noise n
| = Graph-aware linear operator and non-linearity : = The best error is achieved after a few iterations
» Interest on designing the linear operator 7'( ) ) to exploit the information encoded in G = The GDec fits the noise much more slowly than the GCG
Features of the architecture —
» The graph topology is incorporated via the clustering-based design of U(") 100 o LSS e e ———

=
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Problem formulation and goal » The reduced dimensionality of Z implicitly limits the degrees of freedom - 0-1 o
. { -#— Noise

. . . . . . = The GDec is more robust to noise but more sensitive to model mismatch 2 101 S
» Graph signal denoising aims at removing the noise from the observed signal uCJ 3 i -
— Recover unknown signal xy € R from noisy observation x = xg + n : 5 5 =
- _ _ Upsampling Operators for GDec = 1072 \ =
» Traditional methods based on solving a regularized LS problem \M 10735
A . 5 . . . . .
Xo = argminy [X — X5 + aR(Xo|9) > DeS|gn|ng. an upsampl|ng operator Is str.a|ght1.‘orward for. regular signals Lo-3 Lo-4
L . . . =- But is a non-trivial task when dealing with graph signals 0 100 200 300 400 500 0 100 200 300 400 500
= The graph-related regularization promotes desired properties on X Epochs Epochs

» Our solution: rely on agglomerative hierarchical clustering to obtain a dendrogram

» Our goal: design and analyze untrained GNNs to denoise graph signals = Cutting at L + 1 resolutions to obtain a collection of node sets :
A 1 , Numerical results: Real data
— ing—=||X — fo(Z M
© = argming 5 [Xx — /9 (£|9)||3 ~ b4
[,

a } » We test the performance of the proposed GNNSs in a wide range of settings
t t

N . L . . A _ propc
= Eac.h X0 R fQ(Z’g) 'S estlmatéd |nd|V|d.quIIy from a single observation N = Using temperature data, financial data from S&P 500, and the Cora dataset
= Weights O fitted for each x without fraining phase :: P = Considering Gaussian, Uniform, or Bernoulli noise
» Key assumption: GNN is designed to learn the signal faster than noise , : ; g » Compare the performance with several convex and non-linear models
= The GNN incorporates an implicit regularization = How to account for G : N SATASET
— Apply SGD in combination with ear'y stopping + 1!2 1!0 - ; ) (METRIC) METHOD BL TV LR GTF | MED GCNN GAT K-GAE GUSC| GCG GDec
= Contribution: Two different GNN denoising architectures (GCG and GDec) 0 TEMPERATURE Gaussian |0.062 0.117 0.095 0.066 0.053 0.123 0.045 0.134 0.044 0.056 0.035
. . : l (-1 ' : : : : : : : : : : .
b s > Parent-child relations from the dendrogram encoded in P(*) < {0, 1}/ SEP 500 Gaussian 0950 0236 0251 02000919 0.5 0199 0354 0203 [0.168 0158
w&? S “V,.\ .34 = Pl(g) — 1 if node /in Iayer / is the child of nodej N Iayer / — 1 (NMSE) Uniform 0.216 0.246 0.161 0.298 0.340 0.091 0.222 0.273 0.127 |0.094 0.121
@ e < d, Defi jh i h hinati CORA Whole G |0.154 0.142 0.115 0.126]0.167 0.099 0.141 0.135 0.099 |0.093 0.121
ﬁ gw.:.; » Define the upsampling operator as the convex combination (ERROR RATE) Conn. comp.|0.151 0.141 0.105 0.116]0.165 0.093 0.139 0.135 0.094 0.088 0.125
\ U — (- (1 — NADPY) — RO)p)
\"/ g. (0 | (1 (1 =~)A%) » The GCG and/or GDec outperform the alternatives in most settings
True signal Xo Noisy signal x = A' # 0 defined based on known A = GDec outperforms the alternatives in the temperature dataset with smooth signals
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