Untrained graph neural networks for denoising

S. Rey, S. Segarra, R. Heckel, A. G. Marques

48th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023) - Rhodes Island, Greece - June 4-10, 2023

Why denoising graph signals?

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20] \Rightarrow Large amounts of data are propelling data-driven methods like NNs
- Complexity of contemporary systems and networks is increasing
\Rightarrow A popular alternative understand data as signals defined on a graph
\Rightarrow Harness graph topology to deal with irregular structure as in GNNs

Brain network

Social network

Home automation network

Why denoising graph signals?

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20] \Rightarrow Large amounts of data are propelling data-driven methods like NNs
- Complexity of contemporary systems and networks is increasing
\Rightarrow A popular alternative understand data as signals defined on a graph
\Rightarrow Harness graph topology to deal with irregular structure as in GNNs
- Problem: data is corrupted with noise that may render data useless

Brain network

Social network

Home automation network

Why denoising graph signals?

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20] \Rightarrow Large amounts of data are propelling data-driven methods like NNs
- Complexity of contemporary systems and networks is increasing
\Rightarrow A popular alternative understand data as signals defined on a graph
\Rightarrow Harness graph topology to deal with irregular structure as in GNNs
- Problem: data is corrupted with noise that may render data useless
- This work: design architectures to remove the noise from the data

Brain network

Social network

Home automation network

Graphs, signals, and GNNs

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with N nodes and adjacency \mathbf{A}
$\Rightarrow A_{i j}=$ Proximity between i and j
- Define a signal $\mathrm{x} \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ Signal value at node i

Graphs, signals, and GNNs

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A
$\Rightarrow A_{i j}=$ Proximity between i and j
- Define a signal $\mathrm{x} \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ Signal value at node i

- Represent GNN as parametric function $f_{\Theta}(\mathbf{Z} \mid \mathcal{G}): \mathbb{R}^{N^{(0)} \times F^{(0)}} \rightarrow \mathbb{R}^{N}$
- With $\mathbf{Y}^{(0)}=\mathbf{Z}$, a GNN with L layers given by

$$
\begin{aligned}
& \hat{\mathbf{Y}}^{(\ell)}=\mathcal{T}_{\boldsymbol{\Theta}^{(\ell)}}^{(\ell)}\left\{\mathbf{Y}^{(\ell-1)} \mid \mathcal{G}\right\}, \quad 1 \leq \ell \leq L, \\
& Y_{i j}^{(\ell)}=g^{(\ell)}\left(\hat{Y}_{i j}^{(\ell)}\right), \quad 1 \leq \ell \leq L,
\end{aligned}
$$

\Rightarrow Graph-aware linear operator and non-linearity

Graphs, signals, and GNNs

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with N nodes and adjacency A
$\Rightarrow A_{i j}=$ Proximity between i and j
- Define a signal $\mathrm{x} \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ Signal value at node i

- Represent GNN as parametric function $f_{\Theta}(\mathbf{Z} \mid \mathcal{G}): \mathbb{R}^{N^{(0)} \times F^{(0)}} \rightarrow \mathbb{R}^{N}$
- With $\mathbf{Y}^{(0)}=\mathbf{Z}$, a GNN with L layers given by

$$
\begin{aligned}
& \hat{\mathbf{Y}}^{(\ell)}=\mathcal{T}_{\Theta^{(\ell)}}^{(\ell)}\left\{\mathbf{Y}^{(\ell-1)} \mid \mathcal{G}\right\}, \quad 1 \leq \ell \leq L, \\
& Y_{i j}^{(\ell)}=g^{(\ell)}\left(\hat{Y}_{i j}^{(\ell)}\right), \quad 1 \leq \ell \leq L,
\end{aligned}
$$

\Rightarrow Graph-aware linear operator and non-linearity

- Focus on designing the linear operator $\mathcal{T}_{\Theta^{(\ell)}}^{(\ell)}$ to exploit information from \mathcal{G}

Problem description

- Graph signal denoising seeks to remove the noise from the signal
\Rightarrow Recover unknown signal $\mathbf{x}_{0} \in \mathbb{R}^{N}$ from noisy observation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{n}$
- Traditional approaches based on regularized LS [Chen14][Wang15]
\Rightarrow Graph-related regularization to promote desired properties

Problem description

- Graph signal denoising seeks to remove the noise from the signal
\Rightarrow Recover unknown signal $\mathbf{x}_{0} \in \mathbb{R}^{N}$ from noisy observation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{n}$
- Traditional approaches based on regularized LS [Chen14][Wang15]
\Rightarrow Graph-related regularization to promote desired properties
- Our goal: design and analyze untrained GNNs to denoise graph signals

$$
\hat{\boldsymbol{\Theta}}=\operatorname{argmin}_{\boldsymbol{\Theta}} \frac{1}{2}\left\|\mathbf{x}-f_{\boldsymbol{\Theta}}(\mathbf{Z} \mid \mathcal{G})\right\|_{2}^{2}
$$

\Rightarrow Each $\hat{\mathbf{x}}_{0}=f_{\hat{\boldsymbol{\Theta}}}(\mathbf{Z} \mid \mathcal{G})$ estimated individually from a single observation
\Rightarrow Weights $\hat{\boldsymbol{\Theta}}$ fitted for each \mathbf{x} without training phase

Problem description

- Graph signal denoising seeks to remove the noise from the signal \Rightarrow Recover unknown signal $\mathbf{x}_{0} \in \mathbb{R}^{N}$ from noisy observation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{n}$
- Traditional approaches based on regularized LS [Chen14][Wang15]
\Rightarrow Graph-related regularization to promote desired properties
- Our goal: design and analyze untrained GNNs to denoise graph signals

$$
\hat{\boldsymbol{\Theta}}=\operatorname{argmin}_{\boldsymbol{\Theta}} \frac{1}{2}\left\|\mathbf{x}-f_{\boldsymbol{\Theta}}(\mathbf{Z} \mid \mathcal{G})\right\|_{2}^{2}
$$

\Rightarrow Each $\hat{\mathbf{x}}_{0}=f_{\hat{\boldsymbol{\Theta}}}(\mathbf{Z} \mid \mathcal{G})$ estimated individually from a single observation
\Rightarrow Weights $\hat{\boldsymbol{\Theta}}$ fitted for each \mathbf{x} without training phase

- Key assumption: GNN designed to learn the signal faster than noise
\Rightarrow The GNN incorporates an implicit regularization
\Rightarrow Apply SGD in combination with early stopping

Graph Convolutional Generator

- The GCG includes the graph topology via vertex-based convolution
\Rightarrow Graph convolution via fixed GF H $=\sum_{r=0}^{R-1} h_{r} \mathbf{A}^{r} \in \mathbb{R}^{N \times N}$
- The output of the GCG with L layers is

$$
\begin{aligned}
\mathbf{Y}^{(\ell)} & =\operatorname{ReLU}\left(\mathbf{H} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}\right), \text { for } \ell=1, \ldots, L-1 \\
\mathbf{y}^{(L)} & =\mathbf{H} \mathbf{Y}^{(L-1)} \boldsymbol{\Theta}^{(L)}
\end{aligned}
$$

\Rightarrow Fixed \mathbf{H} captures prior knowledge of \mathbf{x}_{0}
\Rightarrow Learnable parameters $\Theta^{(\ell)} \in \mathbb{R}^{F^{(\ell-1)} \times F^{(\ell)}}$ mix columns

Graph Convolutional Generator

- The GCG includes the graph topology via vertex-based convolution
\Rightarrow Graph convolution via fixed GF H $=\sum_{r=0}^{R-1} h_{r} \mathbf{A}^{r} \in \mathbb{R}^{N \times N}$
- The output of the GCG with L layers is

$$
\begin{aligned}
\mathbf{Y}^{(\ell)} & =\operatorname{ReLU}\left(\mathbf{H} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}\right), \text { for } \ell=1, \ldots, L-1 \\
\mathbf{y}^{(L)} & =\mathbf{H} \mathbf{Y}^{(L-1)} \boldsymbol{\Theta}^{(L)}
\end{aligned}
$$

\Rightarrow Fixed \mathbf{H} captures prior knowledge of \mathbf{x}_{0}
\Rightarrow Learnable parameters $\Theta^{(\ell)} \in \mathbb{R}^{F^{(\ell-1)} \times F^{(\ell)}}$ mix columns

- Features of the architecture
\Rightarrow The depth of GCG and the radius of \mathbf{H} are independent
\Rightarrow Avoids over-smoothing problem
\Rightarrow Generalization of the GCNN layer [Kipf16]

Graph Decoder

- GDec includes the graph topology via graph upsampling
\Rightarrow Design of graph upsampling operator $\mathbf{U}^{(\ell)} \in \mathbb{R}^{N^{(\ell)} \times N^{(\ell-1)}}$
- The output of the GDec with L layers is

$$
\begin{aligned}
\mathbf{Y}^{(\ell)} & =\operatorname{ReLU}\left(\mathbf{U}^{(\ell)} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}\right), \text { for } \ell=1, \ldots, L-1 \\
\mathbf{y}^{(L)} & =\mathbf{U}^{(L)} \mathbf{Y}^{(L-1)} \boldsymbol{\Theta}^{(L)}
\end{aligned}
$$

$\Rightarrow \mathbf{U}^{(\ell)}$ increases size of intermediate signals $\mathbf{Y}^{(\ell-1)}$ since $N^{(0)}<N$

Graph Decoder

- GDec includes the graph topology via graph upsampling
\Rightarrow Design of graph upsampling operator $\mathbf{U}^{(\ell)} \in \mathbb{R}^{N^{(\ell)} \times N^{(\ell-1)}}$
- The output of the GDec with L layers is

$$
\begin{aligned}
\mathbf{Y}^{(\ell)} & =\operatorname{ReLU}\left(\mathbf{U}^{(\ell)} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}\right), \text { for } \ell=1, \ldots, L-1 \\
\mathbf{y}^{(L)} & =\mathbf{U}^{(L)} \mathbf{Y}^{(L-1)} \mathbf{\Theta}^{(L)}
\end{aligned}
$$

$\Rightarrow \mathbf{U}^{(\ell)}$ increases size of intermediate signals $\mathbf{Y}^{(\ell-1)}$ since $N^{(0)}<N$

- Features of the architecture
\Rightarrow Graph topology considered via clustering-based design of $\mathbf{U}^{(\ell)}$
\Rightarrow Reduced dimensionality of Z implicitly limits the degrees of freedom
\Rightarrow More robust to noise but more sensitive to model mismatch

Analysis of the architectures

Theoretical analysis

- Considering 2-layer implementations and bandlimited graph signals \mathbf{x}_{0}
- We prove that
$\Rightarrow \mathrm{x}_{0}$ learned faster than noise so error decreases for the first iters
\Rightarrow With too many iters, noise is also learned and error increases
- We can use early stopping to denoise signals with GCG or GDec!

Analysis of the architectures

Theoretical analysis

- Considering 2-layer implementations and bandlimited graph signals \mathbf{x}_{0}
- We prove that
$\Rightarrow \mathbf{x}_{0}$ learned faster than noise so error decreases for the first iters
\Rightarrow With too many iters, noise is also learned and error increases
- We can use early stopping to denoise signals with GCG or GDec!

Numerical validation

- Theoretical analysis validated through simulations
- Tested in real-world datasets
\Rightarrow Weather stations data
\Rightarrow S\&P 500
\Rightarrow Cora

Conclusions

- We approached the problem of graph signal denoising
\Rightarrow Designed untrained GNNs that learn signal faster than noise
- Introduced 2 GNNs that exploit the graph with different methods
\Rightarrow GCG employs vertex-based convolutions
\Rightarrow GDec employs graph upsampling operators
- Performance of both architectures analyzed theoretically and numerically
\Rightarrow Introduced a bound for the error of the denoised signal
\Rightarrow Assessed the performance in synthetic and real-world data
"'thank'=
シ,you

