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Why denoising graph signals? Uriversiad

Rey Juan Carlos

» Data is becoming heterogeneous and pervasive
= Large amounts of data are propelling data-driven methods like NNs

» Complexity of contemporary systems and networks is increasing
= A popular alternative understand data as signals defined on a graph
= Harness graph topology to deal with irregular structure as in GNNs
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Why denoising graph signals? Uriversiad

Rey Juan Carlos

» Data is becoming heterogeneous and pervasive
= Large amounts of data are propelling data-driven methods like NNs

» Complexity of contemporary systems and networks is increasing
= A popular alternative understand data as signals defined on a graph
= Harness graph topology to deal with irregular structure as in GNNs

» Problem: data is corrupted with noise that may render data useless

» This work: design architectures to remove the noise from the data

Brain network Social network Home automation network
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Graphs, signals, and GNNs Er—

Rey Juan Carlos

> Graph G = (V, &) with N nodes and adjacency A T l

= A;; = Proximity between ¢ and j f & ?l
» Define a signal x € R"V on top of the graph T T L

= x; = Signal value at node i ¢
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> Graph G = (V, &) with N nodes and adjacency A T l

= A;; = Proximity between ¢ and j f * ?l
» Define a signal x € R"V on top of the graph T T L

= x; = Signal value at node i ¢

> Represent GNN as parametric function fe(Z|G) : RN *F” _, RN

» With Y(® = Z, a GNN with L layers given by

1:‘;’@»,1 YO =75, {Y(H”g} cistsh
A v =g (V). 1<e<t,

= Graph-aware linear operator and non-linearity
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Graphs, signals, and GNNs Er—
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> Graph G = (V, &) with N nodes and adjacency A T l

= A;; = Proximity between ¢ and j f * ?l
» Define a signal x € R"V on top of the graph T T L

= x; = Signal value at node i ¢

> Represent GNN as parametric function fe(Z|G) : RN *F” _, RN

» With Y(® = Z, a GNN with L layers given by

N A
Sox? YO =75, {Y(Zfl)lg} , 1<U<L,
L3 v =g (v), 1<e<,

= Graph-aware linear operator and non-linearity

» Focus on designing the linear operator Tg(z()g) to exploit information from G
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Problem description Unversiad
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» Graph signal denoising seeks to remove the noise from the signal

= Recover unknown signal xo, € RY from noisy observation x = xo + n

> Traditional approaches based on regularized LS

= Graph-related regularization to promote desired properties
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» Graph signal denoising seeks to remove the noise from the signal

= Recover unknown signal xo, € RY from noisy observation x = xo + n

> Traditional approaches based on regularized LS

= Graph-related regularization to promote desired properties
» Qur goal: design and analyze untrained GNNs to denoise graph signals
. 1 )
© = argming _1x — fo(ZI0)|

= Each xg = fg(Z|G) estimated individually from a single observation

= Weights © fitted for each x without training phase
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» Graph signal denoising seeks to remove the noise from the signal

= Recover unknown signal xo, € RY from noisy observation x = xo + n

> Traditional approaches based on regularized LS

= Graph-related regularization to promote desired properties
» Qur goal: design and analyze untrained GNNs to denoise graph signals
6 = argming 5 x — fo(ZI0)I}
= Each x¢ = fg(Z|G) estimated individually from a single observation

= Weights © fitted for each x without training phase

> Key assumption: GNN designed to learn the signal faster than noise
= The GNN incorporates an implicit regularization
= Apply SGD in combination with early stopping
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Graph Convolutional Generator Universidd
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» The GCG includes the graph topology via vertex-based convolution
= Graph convolution via fixed GF H = Y% h, A" € RN*N

» The output of the GCG with L layers is

Y® = ReLUHYY " PDOY), for £=1,...L—1
y =gyt-Hve®

= Fixed H captures prior knowledge of xg

(£) c RF(lfl) < F®

= Learnable parameters ©® mix columns
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Graph Convolutional Generator Universidd
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» The GCG includes the graph topology via vertex-based convolution
= Graph convolution via fixed GF H = Y% h, A" € RN*N

» The output of the GCG with L layers is

Y® = ReLUHYY " PDOY), for £=1,...L—1
y =gyt-Hve®

= Fixed H captures prior knowledge of xg

(£) c RF(Z*U < F®

= Learnable parameters ©® mix columns

> Features of the architecture
= The depth of GCG and the radius of H are independent
= Avoids over-smoothing problem
= Generalization of the GCNN layer
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Graph Decoder —

Rey Juan Carlos

» GDec includes the graph topology via graph upsampling
= Design of graph upsampling operator U(¥) € RN/ xN""
» The output of the GDec with L layers is
Y = ReLU(UOYEDOO)) for b =1,..,L—1
yB=uyl-Hek

= UW® increases size of intermediate signals Y= since N(O) <

z yow o yt-b y
=) | ReLUUD(-)OW) - - ub()ew —-—)
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Graph Decoder —

Rey Juan Carlos

» GDec includes the graph topology via graph upsampling
= Design of graph upsampling operator U(¥) € RN/ xN""
» The output of the GDec with L layers is
Y = ReLU(UOYEDOO)) for b =1,..,L—1
y(L) — Uy vyE-1Hg)

= UW® increases size of intermediate signals Y= since N(O) <

Y(L 1) Yo
—» ReLU(UM(- )eﬂ)) ub()ew -—)

> Features of the architecture
= Graph topology considered via clustering-based design of U(*)
= Reduced dimensionality of Z implicitly limits the degrees of freedom

= More robust to noise but more sensitive to model mismatch
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Analysis of the architectures Universidd
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Theoretical analysis
» Considering 2-layer implementations and bandlimited graph signals x
» We prove that
= X( learned faster than noise so error decreases for the first iters
= With too many iters, noise is also learned and error increases

» We can use early stopping to denoise signals with GCG or GDec!
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Theoretical analysis
» Considering 2-layer implementations and bandlimited graph signals x
» We prove that
= X( learned faster than noise so error decreases for the first iters
= With too many iters, noise is also learned and error increases
» We can use early stopping to denoise signals with GCG or GDec!

Numerical validation 1004 e g:g:““‘se
> Theoretical analysis validated = ==
through simulations glo—l ! 1
» Tested in real-world datasets c B
= Weather stations data = 1072 \
= S&P 500 -
= Cora 1070160 200 300 460 500

Epochs
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Conclusions e
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» We approached the problem of graph signal denoising
= Designed untrained GNNs that learn signal faster than noise

» Introduced 2 GNNs that exploit the graph with different methods
= GCG employs vertex-based convolutions

= GDec employs graph upsampling operators

» Performance of both architectures analyzed theoretically and numerically
= Introduced a bound for the error of the denoised signal

= Assessed the performance in synthetic and real-world data
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