

Motivating Examples

- Huge data sets are generated in networks (transportation networks, biological networks, brain networks, computer networks, social networks)
- The data structure carries critical information about the nature of the data
- Modelling the data structure with graphs

Interpolate a brain signal
from local observations

Smooth an observed network profile

Compress a signal in

 an irregular domain

Predict the evolution of a network process source of a rumor

Infer the topology where the signals reside

Graph Signal Processing (GSP)

- Consider an undirected weighted graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$ $\Rightarrow \mathcal{V}, \mathcal{E}, \mathcal{W} \rightarrow$ set of nodes, edges, weights
- Define a signal $\mathbf{x} \in \mathbb{R}^{N}$ on the top of the graph
 $\Rightarrow x_{i}=$ value of graph signal (GS) at node i
- Associated with \mathcal{G} is the Graph-Shift Operator (GSO)
$\Rightarrow \mathbf{S} \in \mathbb{R}^{N \times N}, S_{i j} \neq 0$ for $i=j$ and $(i, j) \in \mathcal{E}$
\Rightarrow Ex: Adjacency A, Laplacian $\mathbf{L}=\mathbf{D}-\mathbf{A}$, random walk...
- Graph filters (GFi): Linear GS operators $\mathbf{y}=\mathrm{Hx}$ of the form
$\Rightarrow \mathbf{H}:=\sum_{p=0}^{P-1} h_{p} \mathbf{S}^{p} \Rightarrow$ I.e., GFi are matrix polynomials of \mathbf{S}
- Random GS \Rightarrow Generalizing stationary to $\mathrm{GS} \Rightarrow \mathbf{x}=\mathbf{H w}$ with \mathbf{w} white
\Rightarrow Covariance $\boldsymbol{\Sigma}=\mathbb{E}\left[\mathbf{x x}^{\top}\right]=\mathbb{E}\left[\mathbf{H w}(\mathbf{H w})^{\top}\right]=\mathbf{H E}\left[\mathbf{w w}^{\top}\right] \mathbf{H}^{\top}=\mathbf{H}^{2}$
$\Rightarrow \boldsymbol{\Sigma}$ and H are a polynomials on $\mathbf{S} \Rightarrow \mathbf{x}$ is stationary in \mathbf{S}

Network Topology Inference: Motivation and Context

Network topology inference from nodal observations

"Given a collection $\mathbf{X}:=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{R}\right]$ of graph signal observations supported on the unknown graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{A})$ find an optimal \mathbf{S} "

- III posed problem: optimality, priors, regularizations
\Rightarrow Test Pearson corr., partial corr. and conditional dependence
\Rightarrow Sparsity [Friedman07] and consistency [Meinshausen06]
\Rightarrow Graph Signal Processing (GSP) [Dong17,Mei17,Segarra17]
- This work:
\Rightarrow Use GSP to infer the topology
\Rightarrow Assume \mathbf{x}_{r} 's are i.i.d realizations of $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ and stationary in \mathbf{S}

Graph Topology Inference: Related Work

- Goal: use $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{R}\right] \in \mathbb{R}^{N \times R}$ to infer \mathbf{S} with sample cov. $\hat{\boldsymbol{\Sigma}}=\frac{1}{R} \mathbf{X X}^{\top}$
- Let \mathbf{X} be R samples supported on the graph $\mathcal{G} \Rightarrow$ \{Correlation networks

$$
\hat{\mathbf{S}} \approx \hat{\boldsymbol{\Sigma}}=\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right](\hat{\mathbf{S}} \text { is a thresholded version of } \hat{\boldsymbol{\Sigma}})
$$

- Let \mathbf{X} be R i.i.d samples of $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \Rightarrow\{$ Partial correlation networks $\} G L$

$$
\hat{\mathbf{S}}=\underset{\mathbf{S} \succeq 0, \mathbf{S} \in \mathcal{S}_{\Theta}}{\operatorname{argmin}}-\log (\operatorname{det}(\mathbf{S}))+\operatorname{tr}(\hat{\mathbf{\Sigma}} \mathbf{S})+\rho \mathrm{h}(\mathbf{S})
$$

\Rightarrow Good performance in low-sample scenarios
\Rightarrow Specific covariance model $\boldsymbol{\Sigma}_{\text {MRF }}=(\sigma \mathbf{I}+\delta \mathbf{S})^{-1}$

- Let \mathbf{X} be stationary w.r.t $\mathrm{S} \Rightarrow\{$ Graph-stationary diffusion processes $\}$ GSR

$$
\hat{\mathbf{S}}=\underset{\mathbf{S} \in \mathcal{S}}{\operatorname{argmin}}\|\mathbf{S}\|_{0} \quad \text { s. to } \quad \hat{\boldsymbol{\Sigma}} \mathbf{S}=\mathbf{S} \hat{\boldsymbol{\Sigma}} \quad[\text { Segarra17] }
$$

\Rightarrow More general covariance model $\boldsymbol{\Sigma}_{\text {poly }}=\operatorname{poly}(\mathbf{S})\left\{\begin{array}{c}\text { Corr. netw. } \rightarrow \hat{\boldsymbol{\Sigma}}=\mathbf{S} \\ \text { Part. corr. } \rightarrow \boldsymbol{\Sigma}=\mathrm{S}^{-1}\end{array}\right.$
\Rightarrow Higher number of samples are needed for an accurate estimation

- Other approaches: Smoothness [Dong17], Sparse SEM [Bazerque13]

Graphical Models with St. Signals: Problem Statement

- Given the sample covariance matrix $\hat{\boldsymbol{\Sigma}}$ estimate \mathbf{S} under assumptions
$\Rightarrow(\mathrm{AS} 1):\left\{\mathbf{x}_{r}\right\}$ are i.i.d realizations of $\mathcal{N}\left(\mathbf{0}, \Theta^{-1}\right)$
\Rightarrow (AS2): $\left\{\mathbf{x}_{r}\right\}$ are stationary in \mathbf{S}
- ML approach leveraging (AS1) and the associated log-likelihood function

$$
L(\mathbf{X} \mid \Theta):=\prod_{r=1}^{R} f_{\Theta}\left(\mathbf{x}_{r}\right), \quad \mathcal{L}(\mathbf{X} \mid \Theta):=\sum_{r=1}^{R} \log \left((2 \pi)^{-N / 2} \cdot \operatorname{det}^{\frac{1}{2}}(\Theta) \cdot e^{-\frac{1}{2} \mathbf{x}^{\top} \Theta \mathrm{x}}\right)
$$

- Maximizing the log-likelihood function under (AS2)

Minimize $-\mathcal{L}(\mathbf{X} \mid \Theta)$ under (AS2)

$$
\begin{array}{ll}
\hat{\boldsymbol{\Theta}}, \hat{\mathbf{S}}=\underset{\Theta \succeq 0, \mathbf{S} \in \mathcal{S}}{\operatorname{argmin}}-\log (\operatorname{det}(\Theta))+\operatorname{tr}(\hat{\boldsymbol{\Sigma}} \Theta), \\
\text { s. to } \quad & \|\mathbf{S}\|_{0} \leq \kappa \text { and } \Theta \mathbf{S}=\mathbf{S} \Theta
\end{array}
$$

- Sparsity constraint $\|\mathrm{S}\|_{0} \leq \kappa \rightarrow$ Non-convex
- Key novelty: stationarity also implies $\Theta \mathrm{S}=\mathrm{S} \Theta \rightarrow$ Bi-linear term

Graphical Models with St. Signals: Algorithmic Approach

- Step I. Reformulate Problem I adding convex relaxation ℓ_{1} and auxiliary $\boldsymbol{\Theta}_{2}$

$$
\begin{array}{ll}
\hat{\boldsymbol{\Theta}}_{1}, \hat{\boldsymbol{\Theta}}_{2}, \hat{\mathbf{S}}=\underset{\boldsymbol{\Theta}_{1}, \boldsymbol{\Theta}_{2} \succeq 0 ; \mathbf{S} \in \mathcal{S}}{\operatorname{argmin}} & \operatorname{tr}\left(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Theta}_{1}\right)-\log \operatorname{det}\left(\boldsymbol{\Theta}_{2}\right)+\rho\|\mathbf{S}\|_{1} \\
\text { s. to } & \boldsymbol{\Theta}_{1} \mathbf{S}=\mathbf{S} \boldsymbol{\Theta}_{1} \text { and } \boldsymbol{\Theta}_{1}=\boldsymbol{\Theta}_{2}
\end{array}
$$

- Step II. Define augmented Lagrangian with multipliers $\Rightarrow \mathbf{Y}$ and \mathbf{Z}

$$
\begin{aligned}
\hat{\mathbf{\Theta}}_{1}, \hat{\boldsymbol{\Theta}}_{2}, \hat{\mathbf{S}}=\underset{\Theta_{1}, \Theta_{2} \succeq 0 ; \mathbf{S} \in \mathcal{S}}{\operatorname{argmin}} & \operatorname{tr}\left(\hat{\mathbf{\Sigma}} \Theta_{1}\right)-\log \operatorname{det}\left(\Theta_{2}\right)+\rho\|\mathbf{S}\|_{1}+\left\langle\mathbf{Z}, \Theta_{1}-\Theta_{2}\right\rangle \\
& +\frac{\lambda}{2}\left\|\Theta_{1}-\Theta_{2}\right\|_{F}^{2}+\left\langle\mathbf{Y}, \Theta_{1} \mathbf{S}-\mathbf{S} \Theta_{1}\right\rangle+\frac{\lambda}{2}\left\|\Theta_{1} \mathbf{S}-\mathbf{S} \Theta_{1}\right\|_{F}^{2}
\end{aligned}
$$

- Step III. Solving the problem via alternating algorithm

1. $\hat{\boldsymbol{\Theta}}_{1}^{(t+1)}=\underset{\Theta_{1} \succeq 0}{\operatorname{argmin}} L_{f}\left(\Theta_{1}, \boldsymbol{\Theta}_{2}^{(t)}, \mathbf{S}^{(t)}, \mathbf{Y}^{(t)}, \mathbf{Z}^{(t)}\right)$

$$
\text { 4. } \mathbf{Y}^{(t+1)}=\mathbf{Y}^{(t)}+\lambda\left(\mathbf{\Theta}_{2}^{(t+1)} \mathbf{S}^{(t+1)}-\mathbf{S}^{(t+1)} \mathbf{\Theta}_{2}^{(t+1)}\right)
$$

2. $\hat{\mathbf{\Theta}}_{2}^{(t+1)}=\underset{\Theta_{2} \succeq 0}{\operatorname{argmin}} L_{f}\left(\mathbf{\Theta}_{1}^{(t+1)}, \boldsymbol{\Theta}_{2}, \mathbf{S}^{(t)}, \mathbf{Y}^{(t)}, \mathbf{Z}^{(t)}\right)$

$$
\text { 5. } \mathbf{Z}^{(t+1)}=\mathbf{Z}^{(t)}+\lambda\left(\mathbf{\Theta}_{2}^{(t+1)}-\mathbf{\Theta}_{1}^{(t+1)}\right)
$$

3. $\hat{\mathbf{S}}^{(t+1)}=\underset{\mathbf{S} \in \mathcal{S}}{\operatorname{argmin}} L_{f}\left(\mathbf{\Theta}_{1}^{(t+1)}, \boldsymbol{\Theta}_{2}^{(t+1)}, \mathbf{S}, \mathbf{Y}^{(t)}, \mathbf{Z}^{(t)}\right)$

Synthetic Data Results

- Recovery performance for different algorithms from sample covariance considering 2 setups: $\boldsymbol{\Sigma}=(\sigma \mathbf{I}+\delta \mathbf{S})^{-1}$ (MRF) and $\boldsymbol{\Sigma}=\sum_{p=0}^{2 P-2} c_{p} \mathbf{S}^{P}$ (Poly)

- Similar performance results for GGSR and GL with MRF setup
- Significant improvement for GGSR compared to GSR with Poly setup

Financial Data Experiment I

- Estimation of the connections between 40 companies from 4 different sectors of the SP500 index using daily stock closing price during 2010-2016

Clustering errors: 14

Clustering errors: 3

Clustering errors: 2

Financial Data Experiment II

- Time-varying graph learning for investment strategies. [Cardoso20]
\Rightarrow How good the graph estimates are? \Rightarrow No real ground truth
\Rightarrow Approach: Using the graph to design an investment strategy

\Rightarrow GGSR performs best \Rightarrow Implicit validation

Conclusions

- New graph learning scheme that subsumes GL
- Key assumptions: graph sparse, signals Gaussian, and relation between those two (stationarity)
- Requires way less signals than non-Gaussian stationarity-based approaches
- Challenge: ML estimation non-convex
\Rightarrow Relaxations and alternating minimization algorithm
- Encouraging results in both synthetic and real data sets
- THANKS!
\Rightarrow Additional details can be found in the paper
\Rightarrow Feel free to contact me for questions and code andrei.buciulea@urj.es

