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Motivating Examples

▶ Huge data sets are generated in networks (transportation networks,
biological networks, brain networks, computer networks, social networks)

▶ The data structure carries critical information about the nature of the data

▶ Modelling the data structure with graphs
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Graph Signal Processing (GSP)

▶ Consider an undirected weighted graph G(V, E ,W)

⇒ V, E , W → set of nodes, edges, weights

▶ Define a signal x ∈ RN on the top of the graph

⇒ xi = value of graph signal (GS) at node i

▶ Associated with G is the Graph-Shift Operator (GSO)

⇒ S ∈ RN×N , Sij ̸= 0 for i = j and (i , j) ∈ E
⇒ Ex: Adjacency A, Laplacian L = D− A, random walk...

▶ Graph filters (GFi): Linear GS operators y = Hx of the form

⇒ H :=
∑P−1

p=0 hpSp ⇒ I.e., GFi are matrix polynomials of S

▶ Random GS ⇒ Generalizing stationary to GS ⇒ x = Hw with w white

⇒ Covariance Σ = E
[
xxT

]
= E

[
Hw

(
Hw

)T]
= HE

[
wwT

]
HT = H2

⇒ Σ and H are a polynomials on S ⇒ x is stationary in S
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Network Topology Inference: Motivation and Context

Network topology inference from nodal observations

“Given a collection X := [x1, ..., xR ] of graph signal observations
supported on the unknown graph G(V, E ,A) find an optimal S”

▶ Ill posed problem: optimality, priors, regularizations
⇒ Test Pearson corr., partial corr. and conditional dependence
⇒ Sparsity [Friedman07] and consistency [Meinshausen06]

⇒ Graph Signal Processing (GSP) [Dong17,Mei17,Segarra17]

▶ This work:
⇒ Use GSP to infer the topology
⇒ Assume xr ’s are i.i.d realizations of N (0,Σ) and stationary in S
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Graph Topology Inference: Related Work

▶ Goal: use X = [x1, ..., xR ] ∈ RN×R to infer S with sample cov. Σ̂ = 1
RXX

T

▶ Let X be R samples supported on the graph G ⇒ {Correlation networks}
Ŝ ≈ Σ̂ = E

[
XXT

]
(Ŝ is a thresholded version of Σ̂)

▶ Let X be R i.i.d samples of N (0,Σ)⇒{Partial correlation networks} GL

Ŝ = argmin
S⪰0,S∈SΘ

− log(det(S)) + tr(Σ̂S) + ρh(S)

⇒ Good performance in low-sample scenarios
⇒ Specific covariance model ΣMRF = (σI+ δS)−1

▶ Let X be stationary w.r.t S⇒{Graph-stationary diffusion processes} GSR

Ŝ = argmin
S∈S

∥S∥0 s. to Σ̂S = SΣ̂ [Segarra17]

⇒ More general covariance model Σpoly = poly(S)
{

Corr. netw.→Σ̂=S
Part. corr.→Σ̂=S−1

⇒ Higher number of samples are needed for an accurate estimation

▶ Other approaches: Smoothness [Dong17], Sparse SEM [Bazerque13]
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Graphical Models with St. Signals: Problem Statement

▶ Given the sample covariance matrix Σ̂ estimate S under assumptions

⇒ (AS1): {xr} are i.i.d realizations of N (0,Θ−1)

⇒ (AS2): {xr} are stationary in S
▶ ML approach leveraging (AS1) and the associated log-likelihood function

L(X|Θ) :=
R∏

r=1

fΘ(xr ), L(X|Θ) :=
R∑

r=1

log
(
(2π)−N/2 · det

1
2 (Θ) · e−

1
2
xTΘx

)
▶ Maximizing the log-likelihood function under (AS2)

Problem I: Minimize −L(X|Θ) under (AS2)

Θ̂, Ŝ = argmin
Θ⪰0,S∈S

− log(det(Θ)) + tr(Σ̂Θ),

s. to ∥S∥0 ≤ κ and ΘS = SΘ

▶ Sparsity constraint ∥S∥0 ≤ κ → Non-convex

▶ Key novelty: stationarity also implies ΘS = SΘ → Bi-linear term
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Graphical Models with St. Signals: Algorithmic Approach

▶ Step I. Reformulate Problem I adding convex relaxation ℓ1 and auxiliary Θ2

Θ̂1, Θ̂2, Ŝ = argmin
Θ1,Θ2⪰0;S∈S

tr(Σ̂Θ1) − log det(Θ2) + ρ∥S∥1

s. to Θ1S = SΘ1 and Θ1 = Θ2

▶ Step II. Define augmented Lagrangian with multipliers ⇒ Y and Z

Θ̂1, Θ̂2, Ŝ = argmin
Θ1,Θ2⪰0;S∈S

tr(Σ̂Θ1) − log det(Θ2) + ρ∥S∥1 + ⟨Z,Θ1 − Θ2⟩

+
λ

2
∥Θ1 − Θ2∥2

F + ⟨Y,Θ1S − SΘ1⟩ +
λ

2
∥Θ1S − SΘ1∥2

F

▶ Step III. Solving the problem via alternating algorithm

1. Θ̂
(t+1)
1 = argmin

Θ1⪰0
Lf (Θ1,Θ

(t)
2 , S(t)

,Y(t)
,Z(t))

2. Θ̂
(t+1)
2 = argmin

Θ2⪰0
Lf (Θ

(t+1)
1 ,Θ2, S

(t)
,Y(t)

,Z(t))

3. Ŝ(t+1) = argmin
S∈S

Lf (Θ
(t+1)
1 ,Θ

(t+1)
2 , S,Y(t)

,Z(t))

4. Y(t+1) = Y(t)+λ
(
Θ

(t+1)
2 S(t+1) − S(t+1)Θ

(t+1)
2

)

5. Z(t+1) = Z(t) + λ
(
Θ

(t+1)
2 − Θ

(t+1)
1

)
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Synthetic Data Results

▶ Recovery performance for different algorithms from sample covariance
considering 2 setups: Σ= (σI+ δS)−1 (MRF) and Σ=

∑2P−2
p=0 cpSp (Poly)

▶ Similar performance results for GGSR and GL with MRF setup

▶ Significant improvement for GGSR compared to GSR with Poly setup
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Financial Data Experiment I

▶ Estimation of the connections between 40 companies from 4 different
sectors of the SP500 index using daily stock closing price during 2010-2016
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Financial Data Experiment II

▶ Time-varying graph learning for investment strategies. [Cardoso20]

⇒ How good the graph estimates are? ⇒ No real ground truth

⇒ Approach: Using the graph to design an investment strategy

⇒ GGSR performs best ⇒ Implicit validation
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Conclusions

▶ New graph learning scheme that subsumes GL

▶ Key assumptions: graph sparse, signals Gaussian, and relation between
those two (stationarity)

▶ Requires way less signals than non-Gaussian stationarity-based approaches

▶ Challenge: ML estimation non-convex

⇒ Relaxations and alternating minimization algorithm

▶ Encouraging results in both synthetic and real data sets

▶ THANKS!

⇒ Additional details can be found in the paper

⇒ Feel free to contact me for questions and code andrei.buciulea@urjc.es
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