Network Topology Inference from Gaussian and
Statlonary Graph Signals
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A. Buciulea Network Topology Inference from Gaussian and Stationary Graph Signals



Motivating Examples

> Huge data sets are generated in networks (transportation networks,
biological networks, brain networks, computer networks, social networks)

» The data structure carries critical information about the nature of the data

» Modelling the data structure with graphs

Interpolate a brain signal Compress a signal in Localize the
from local observations an irregular domain source of a rumor
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Smooth an observed Predict the evolutionof a Infer the topology where
network profile network process the signals reside



Graph Signal Processing (GSP)

» Consider an undirected weighted graph G(V, &, W) b
=V, &, W — set of nodes, edges, weights l) (L l (L L
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L

» Define a signal x € R" on the top of the graph i} o
= x; = value of graph signal (GS) at node i
> Associated with G is the Graph-Shift Operator (GSO)
= SeRVN S, £0fori=jand (i,j) €E
= Ex: Adjacency A, Laplacian L = D — A, random walk...
> Graph filters (GFi): Linear GS operators y = Hx of the form

= H:= ZP L h hp,SP = l.e., GFi are matrix polynomials of S
» Random GS = Generalizing stationary to GS = x = Hw with w white

= Covariance X = E [xxT] =E [HW(HW)T] = HE [ww ] HT = H2

= X and H are a polynomials on S = x is stationary in S



Network Topology Inference: Motivation and Context

Network

from nodal observations

“Given a collection X := [xy, ..., Xxg] of graph signal observations
supported on the unknown graph G(V, €, A) find an optimal S”
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» |ll posed problem: optimality, priors, regularizations
= Test Pearson corr., partial corr. and conditional dependence
= Sparsity and consistency
= Graph Signal Processing (GSP)

» This work:
= Use GSP to infer the topology

= Assume x,'s are i.i.d realizations of A/(0,X) and stationary in S



Graph Topology Inference: Related Work

> Goal: use X = [x1, ..., xg] € RV*R to infer S with sample cov. & = LXXT

> Let X be R samples supported on the graph G = {Correlation networks}
S~¥i=E [XXT] (S is a thresholded version of %)

> Let X be R i.i.d samples of A/(0, X)=-{Partial correlation networks} GL

S = argmin — log(det(S)) + tr(£S) + ph(S)
$-0,5€Se
= Good performance in low-sample scenarios
= Specific covariance model ygrr = (ol + 55)_1

> Let X be stationary w.r.t S=-{Graph-stationary diffusion processes} GSR

A

S =argmin ||S|loy s to £S=S%
ses

Corr. netw.—l)AI:S
Part. corr.—¥=S-1

= Higher number of samples are needed for an accurate estimation

= More general covariance model X, = poly(S) {

» Other approaches: Smoothness , Sparse SEM



Graphical Models with St. Signals: Problem Statement

> Given the sample covariance matrix ¥ estimate S under assumptions
= (AS1): {x,} are i.i.d realizations of A'(0, ©®1)
= (AS2): {x,} are stationary in S
»> ML approach Ieveragmg (AS1) and the associated log-likelihood function

L(X|@®): Hf@(Xr) L(X|©): Z|°g ((27r)_’"/2 det}(0). e ¥ @x)

r=1

> Maximizing the log-likelihood function under (AS2)

Minimize —L£(X|®) under (AS2)

6,5 = argmin — log(det(©)) + tr(£0),
©:0,5€S
s. to ISllo < & and ©S =SO
» Sparsity constraint ||S|lo < k — Non-convex

> Key novelty: stationarity also implies ©S = S© — Bi-linear term
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Graphical Models with St. Signals: Algorithmic Approach

» Step |. Reformulate Problem | adding convex relaxation ¢; and auxiliary ©;
01,0,,8§ = argmin  tr(£0;) — log det(®2) + p||S||1
91,0,-0SeS

s. to ©:;S=S0; and ©; =0,

> Step Il. Define augmented Lagrangian with multipliers = Y and Z

0,,0,,8§ = argmin  t(20,) — logdet(®2) + p||S|[1 + (Z,0, — ©5)
01,0, >0SES

A A
+ 51101 = ©all} + (¥, 0.5 —50,) + 50,5 - 50, |12

> Step Ill. Solving the problem via alternating algorithm

1. (:)gtﬂ) = argr:in Le(©1, Gg), s, Y(t), Z(t))
9120 4. Y+ — y(© 4 ) (e§t+1)s(t+1) _ S(t+1)e£t+1))
2.05™ = argmin L@V, @,,50, ¥ ()
0,70 5. z(ttD) — 7(1) Y (0§t+l) _ e(1r+1))

3.8 — argmin L@, 0 s, ¥v(®) (")
ses
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Synthetic Data Results

» Recovery performance for different algorithms from sample covariance
considering 2 setups: £= (ol +S)~! (MRF) and £= Ef,’igz c,SP (Poly)
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» Similar performance results for GGSR and GL with MRF setup

» Significant improvement for GGSR compared to GSR with Poly setup



Financial Data Experiment |

» Estimation of the connections between 40 companies from 4 different
sectors of the SP500 index using daily stock closing price during 2010-2016
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Financial Data Experiment |l

» Time-varying graph learning for investment strategies.
= How good the graph estimates are? = No real ground truth
= Approach: Using the graph to design an investment strategy
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= GGSR performs best = Implicit validation
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Conclusions

» New graph learning scheme that subsumes GL
> Key assumptions: graph sparse, signals Gaussian, and relation between
those two (stationarity)
» Requires way less signals than non-Gaussian stationarity-based approaches
» Challenge: ML estimation non-convex
= Relaxations and alternating minimization algorithm
» Encouraging results in both synthetic and real data sets

» THANKS!
= Additional details can be found in the paper
= Feel free to contact me for questions and code andrei.buciulea@urjc.es
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