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Introduction Problem Statement

» Graph SP: models the irregular structure of a dataset using a graph » Given the sample covariance matrix 3 » Recovery performance for different algorlthms from sample covariance considering 2

Th ' itical inf ' h f th . . L = p ' ith N=
= The data structure carries critical information about the nature of the data > Find the sparsest solution S related to the graph structure considering: setups £ = (ol +6S)~ 1 (MRF) and £ = Z 0 cpS (Poly) using ER graphs with N=20
=- Leverages the graph topology to process the data
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Preliminaries of Graph Signal Processing S can be expressed as a polynomial on © = S = poly(9) ; y 13{} GGk
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= X; = Signal value at node i ©®>0,SeS = Similar performance results for GGSR and GL with MRF setup
S. t0 |Sllp <~ and OS = SO. = Significant improvement for GGSR compared to GSR with Poly setup

» Associated with G — graph-shift operator (GSO) S € RV*N

. e . » Sparsity constraint ||S||g < k — Non-convex
= Sjj# 0ifandonlyifi=jor(i,j) €€ PRSI - | Uo = o Numerical Results - Influence of noisy samples
: e » Commutativity constraint @S = SO — Bi-linear term

= Represents local structure in G, in this work S = A

» Recovery performance achieved by different algorithms for ER graphs when varying the
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> Graph filters — Linear operators of the form H := Z hpS Graphical Models with Stationary Signals: Proposed Solution noise power present in the signals (R = 10°)
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O '.'I, [Aﬂumpﬁ:wm ] o v, * §H@1 — O2flF + (Y, 015 -501) + 5”613 —SOillE = The impact of the noise is more noticeable for Poly than for MRF setup
= For Poly setup GGSR is less sensitive to noise than GSR
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