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Introduction

▶ Graph SP: models the irregular structure of a dataset using a graph
⇒ The data structure carries critical information about the nature of the data
⇒ Leverages the graph topology to process the data

Preliminaries of Graph Signal Processing

▶ A graph G: N nodes and links connecting them
⇒ G ≡ (V , E ,A), E ⊆ V × V, A ∈ RN×N

▶ Define a signal x ∈ RN on top of the graph
⇒ xi = Signal value at node i

▶ Associated with G → graph-shift operator (GSO) S ∈ RN×N

⇒ Sij ̸= 0 if and only if i = j or (i , j) ∈ E
⇒ Represents local structure in G, in this work S = A

▶ Graph filters → Linear operators of the form H :=
∑P−1

p=0 hpSp [Sandryhaila13]

▶ Random signal x is stationary in GSO S if x = Hw, with w white

⇒ Σ = E
[
Hw

(
Hw

)T
]
= HE

[
wwT

]
HT = H2 → Σ is a polynomial on S

Network Topology Inference

Network topology inference from nodal observations
“Given a collection X := [x1, ...,xR] of graph signal observations supported on the

unknown graph G(V , E ,A) find an optimal S”

▶ Ill posed problem: optimality, priors, regularizations
⇒ Test Pearson correlations, partial correlations and conditional dependence
⇒ Sparsity [Friedman07] and consistency [Meinshausen06]

⇒ Graph Signal Processing (GSP) [Dong17,Mei17,Segarra17,Mateos19]

▶ This work uses graphical models and GSP to infer the network topology
⇒ Assume each xr is a i.i.d realization of N (0,Σ) and stationary in S

▶ General Goal: Infer the GSO (precision matrix Θ or S) from Σ̂

⇒ With Σ̂ = 1
RXXT being the sample covariance matrix and X = [x1, ...,xR] ∈ RN×R

⇒ Assuming: 1) Gaussian or 2) Stationary signals on the graph

Graph Topology Inference from Gaussian Signals (GL) [Friedman08]

▶ Let X ∈ RN×R be R i.i.d samples of N (0,Σ)

Θ̂ = argmin
Θ⪰0,Θ∈S

− log det(Θ) + tr(Σ̂Θ) + ρh(Θ)

▶ General properties ⇒ Good performance in low-sample scenarios
⇒ Specific covariance model ΣMRF = (σI + δS)−1

Graph Topology Inference from Stationary Signals (GSR) [Segarra17]

▶ Let X be stationary w.r.t S → xr = (
∑P−1

p=0 hpSp)wr

Ŝ = argmin
S

∥S∥0 s. to Σ̂S = SΣ̂, S ∈ S

▶ General properties ⇒ More general covariance model Σpoly =
∑2P−2

p=0 cpSp

⇒ More samples needed for accurate estimation

Problem Statement

▶ Given the sample covariance matrix Σ̂

▶ Find the sparsest solution S related to the graph structure considering:

⇒ (AS1): {xr}R
r=1 are i.i.d realizations of N (0, I)

PDF in terms of precision matrix Θ and log-likelihood function

fΘ(x) = (2π)−N/2 · det
1
2(Θ) · e−

1
2xTΘx, L(X|Θ) =

R∑
r=1

log(fΘ(xr ))

⇒ (AS2): {xr}R
r=1 are stationary in S

S can be expressed as a polynomial on Θ ⇒ S = poly(Θ)

Θ can be expressed as a polynomial on S ⇒ Θ = poly ′(S)

Problem I: Minimize −L(X|Θ) under (AS2)

Θ̂, Ŝ = argmin
Θ⪰0,S∈S

− log(det(Θ)) + tr(Σ̂Θ),

s. to ∥S∥0 ≤ κ and ΘS = SΘ.

▶ Sparsity constraint ∥S∥0 ≤ κ → Non-convex
▶ Commutativity constraint ΘS = SΘ → Bi-linear term

Graphical Models with Stationary Signals: Proposed Solution

▶ Reformulate Problem I adding:

⇒ The ℓ1 norm as a convex relaxation of the ℓ0 norm

⇒ A new optimization variable Θ2

Θ̂1, Θ̂2, Ŝ = argmin
Θ1,Θ2⪰0;S∈S

tr(Σ̂Θ1)− log det(Θ2) + ρ∥S∥1

s. to Θ1S = SΘ1 and Θ1 = Θ2

▶ Problem II: Min. the augmented Lagrangian with Lagrange multipliers ⇒ Y and Z

Θ̂1, Θ̂2, Ŝ = argmin
Θ1,Θ2⪰0;S∈S

tr(Σ̂Θ1)− log det(Θ2) + ρ∥S∥1 + ⟨Z,Θ1 −Θ2⟩

+
λ

2
∥Θ1 −Θ2∥2

F + ⟨Y,Θ1S − SΘ1⟩ +
λ

2
∥Θ1S − SΘ1∥2

F

Iterative Block Successive Upper-bound Minimization algorithm (GGSR) [Hong16]

▶ Subproblem I: given Θ
(t)
2 , S(t), Y(t), and Z(t) estimate Θ

(t+1)
1

Θ
(t+1)
1 = argmin

Θ1⪰0
tr(ΣΘ1) + ⟨Z(t),Θ1⟩ +

λ

2
∥Θ1 −Θ

(t)
2 ∥2

F

+ ⟨Y(t),Θ1S(t) − S(t)Θ1⟩ +
λ

2
∥Θ1S(t) − S(i)Θ1∥2

F .

▶ Subproblem II: given Θ
(t+1)
1 and Z(t) estimate Θ

(t+1)
2

Θ
(t+1)
2 = argmin

Θ2⪰0
− log det(Θ2) + ⟨Z(t),Θ2⟩ +

λ

2
∥Θ(t+1)

1 −Θ2∥2
F .

▶ Subproblem III: given Θ
(t+1)
2 and Y(t) estimate S(t+1)

S(t+1) = argmin
S∈S

ρ∥S∥1 + ⟨Y(t),Θ
(t+1)
2 S − SΘ(t+1)

2 ⟩ + λ

2
∥Θ(t+1)

2 S − SΘ(t+1)
2 ∥2

F .

▶ Update Y and Z given Θ
(t+1)
1 , Θ(t+1)

2 S(t+1), Y(t), and Z(t)

Y(t+1) = Y(t) + λ
(
Θ

(t+1)
2 S(t+1) − S(t+1)Θ

(t+1)
2

)
,

Z(t+1) = Z(t) + λ
(
Θ

(t+1)
1 −Θ

(t+1)
2

)
.

Numerical Results - Influence of the number of samples

▶ Recovery performance for different algorithms from sample covariance considering 2
setups Σ = (σI + δS)−1 (MRF) and Σ =

∑2P−2
p=0 cpSp (Poly) using ER graphs with N=20

⇒ Similar performance results for GGSR and GL with MRF setup
⇒ Significant improvement for GGSR compared to GSR with Poly setup

Numerical Results - Influence of noisy samples

▶ Recovery performance achieved by different algorithms for ER graphs when varying the
noise power present in the signals (R = 106)

⇒ The impact of the noise is more noticeable for Poly than for MRF setup
⇒ For Poly setup GGSR is less sensitive to noise than GSR

Financial data experiment

▶ Time-varying graph learning for investment strategies [Cardoso20]

⇒ How good the graph estimates are? ⇒ No real ground truth

⇒ Approach: Using the graph to design an investment strategy

⇒ GGSR performs best ⇒ Implicit validationandrei.buciulea@urjc.es 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece June 4-10, 2023


