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ABSTRACT

Audio-visual speech enhancement aims to extract clean speech from
a noisy environment by leveraging not only the audio itself but also
the target speaker’s lip movements. This approach has been shown
to yield improvements over audio-only speech enhancement, par-
ticularly for the removal of interfering speech. Despite recent ad-
vances in speech synthesis, most audio-visual approaches continue
to use spectral mapping/masking to reproduce the clean audio, of-
ten resulting in visual backbones added to existing speech enhance-
ment architectures. In this work, we propose LA-VocE, a new two-
stage approach that predicts mel-spectrograms from noisy audio-
visual speech via a transformer-based architecture, and then converts
them into waveform audio using a neural vocoder (HiFi-GAN). We
train and evaluate our framework on thousands of speakers and 11+
different languages, and study our model’s ability to adapt to differ-
ent levels of background noise and speech interference. Our experi-
ments show that LA-VocE outperforms existing methods according
to multiple metrics, particularly under very noisy scenarios.

Index Terms— Audio-visual speech enhancement, speech sep-
aration, speech synthesis, neural vocoder, transformer.

1. INTRODUCTION

Speech enhancement, defined as the extraction of clean speech from
a noisy signal, is a well-established signal processing task which has
benefited greatly from the advent of deep learning [1]. Recently-
proposed models excel at denoising and dereverberation [2, 3],
but often struggle with very low signal-to-noise ratios (SNR) [4].
Furthermore, audio-only methods struggle to accurately remove
background speech, as they are limited in the information they can
use to distinguish it from the target signal. These limitations have
drawn researchers to leverage visual cues of the target speaker’s
lip movements as additional supervision – an approach known as
audio-visual speech enhancement (AVSE). This can be particularly
valuable for applications such as video conferencing, streaming,
recording and hearing augmentation in a crowded and / or noisy
environment, where the target speaker’s video stream can help the
model enhance their speech. This method may also be leveraged to
improve speech recognition in low-SNR conditions. Furthermore,
the recent success of video-to-speech synthesis [5, 6], where the
audio is reproduced using only silent video, highlights the impor-
tance of the visual modality and shows a promising direction for
audio-visual speech enhancement in very low-SNR conditions.

Recent AVSE methods are often based on U-Nets [7–9], inspired
by their audio-only counterparts [2, 3, 10], or simple convolutional
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networks [11], frequently combined with LSTMs [12]. Existing
speech enhancement models are typically combined with a video en-
coder which extracts visual features and concatenates them with the
acoustic features to perform audio-visual enhancement. These ap-
proaches draw from speech enhancement literature, but fail to lever-
age state-of-the-art audio-visual encoders [13, 14]. Most methods
estimate (either directly or via a mask) the magnitude and phase of
the clean spectrogram, which are converted into waveform using the
inverse Short-Time Fourier Transform (iSTFT) [7, 9, 11], while oth-
ers attempt to perform enhancement in the time domain directly [8].
Both of these reconstruction techniques rely on very accurate pre-
dictions, which can be difficult to achieve, especially in low-SNR
environments where audio supervision is unreliable. Recent works
in audio-only [15, 16] and audio-visual [12] speech enhancement
have introduced neural vocoders as an alternative synthesis method,
but choose to focus on high-SNR scenarios where this reconstruction
technique is likely to have a lesser impact. Alternatively, new works
introduce neural codecs [17] for waveform synthesis but focus heav-
ily on achieving compressed representations, which is not a priority
for most speech enhancement frameworks.

To address these shortcomings, we propose a new two-stage ap-
proach for audio-visual speech enhancement entitled Low-SNR
Audio-visual Vocoder-based Speech Enhancement (LA-VocE).
First, we train an audio-visual spectrogram enhancer, which re-
ceives noisy speech and video of the cropped mouth, and aims to
predict a clean spectrogram. This model features a ResNet-18-based
visual encoder [18] and a large transformer encoder [19] to model
the temporal correlations in the audio-visual features, and is trained
using an L1 loss between the real and predicted mel-spectrogram
magnitudes. We then train a neural vocoder (HiFi-GAN V1 [20]) to
predict waveform audio from clean mel-spectrograms on the same
corpus. This fully convolutional model is trained using a mixture
of adversarial and comparative losses, with an ensemble of eight
discriminators operating on multiple periods and scales. During
inference, the enhancer and the vocoder are combined to perform
end-to-end audio-visual speech enhancement.

Our contributions are as follows: (1) We present a new audio-
visual speech enhancement approach that combines a transformer-
based spectrogram enhancer with our version of HiFi-GAN V1. (2)
We train our model to remove background noise and speech on the
challenging AVSpeech dataset. (3) We compare our approach with
previous state-of-the-art models, and show that it significantly out-
performs all methods across all metrics and noise conditions. (4) We
study our model’s ability to generate clean audio for varying levels of
noise and interference and find that it consistently achieves improve-
ments in speech intelligibility. (5) We measure our trained vocoder’s
effectiveness against other spectrogram inversion approaches and
observe that it significantly outperforms other methods.
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Fig. 1. Summary of LA-VocE’s two-stage training approach and inference procedure.

2. METHODOLOGY

2.1. Audio-visual spectral enhancement
LA-VocE is summarized in Fig. 1. The first stage in our framework
consists of training an audio-visual spectrogram enhancer. This
model extracts visual features using a 2D ResNet-18 [18] with a
3D convolutional stem (as in [5, 6, 21, 22]), and acoustic features
using a single linear layer. The video features are then upsampled
(via nearest neighbors interpolation) to match the audio features’
frame rate, and the features from the two modalities are concate-
nated along the channel dimension. The fused audio-visual features
are fed into the transformer encoder [19] - the largest component
in the network. This module comprises an initial embedding layer,
with a linear layer followed by relative positional encoding [23],
and 12 transformer encoder blocks, where the attention dimension,
feedforward dimension, and the number of attention heads are 768,
3072, and 12, respectively. Finally, these features are decoded via a
linear layer into the predicted mel-frequency spectrogram. We train
the model by applying an L1 Loss:

L1 = ∥sclean − E(snoisy, v)∥1, (1)

where sclean and snoisy are the clean and noisy mel-spectrograms,
respectively, v is the video of the speaker’s lip movements and E is
our audio-visual spectrogram enhancer.

2.2. Waveform synthesis
The second stage in our method involves training a neural vocoder
to convert the enhanced spectrograms into waveform audio. We use
HiFi-GAN [20], which upsamples the spectrogram gradually using
a set of transposed convolutions. In particular, we opt for HiFi-
GAN V1, the largest HiFi-GAN variant, which features 12 Res-
Blocks with hidden size 512, amounting to 13.92 million parameters.
As proposed in [20], HiFi-GAN is trained via a multi-period discrim-
inator (MPD), composed of five convolutional sub-discriminators
which analyze the waveform along different periods (i. e., every 2,
3, 5, 7 and 11 samples), and a multi-scale discriminator (MSD),
consisting of one sub-discriminator for the raw audio and two sub-
discriminators that receive downsampled versions of the same wave-

form (via 2× and 4× average pooling). Our training objective (as
in the original HiFi-GAN) combines the Least Squares Generative
Adversarial Network (LSGAN) loss [24] with an L1 loss on the mel-
spectrogram magnitudes and a feature matching loss [25]:

LG = α1LGadv + α2Lspec + α3LFM , (2)

LGadv =

ND∑
i=1

(Di(G(sclean))− 1)2, (3)

Lspec = ∥m(wclean)−m(G(sclean))∥1, (4)

LFM =

ND∑
i=1

NLi∑
l=1

∥Dl
i(wclean)−Dl

i(G(sclean))∥1
dli

, (5)

LD =

ND∑
i=1

(Di(wclean)− 1)2 +Di(G(sclean))
2, (6)

where LG is the generator loss, LD is the discriminator loss, LGadv

is the generator’s adversarial loss, Lspec is the mel-spectrogram loss,
LFM is the feature matching loss, G is the generator (HiFi-GAN
V1), Di is the i-th discriminator, ND is the number of discrimi-
nators, wclean is the clean waveform, m is the function that com-
putes the mel-spectrogram, NLi is the number of layers in discrim-
inator i, and Dl

i and dli refer to the features extracted from layer
l / discriminator i and their dimension, respectively. Loss coeffi-
cients α1, α2 and α3 are set to 1, 45, and 2, respectively, as in [20].
After both stages of training, the spectrogram enhancer and neural
vocoder are combined during inference, as shown in Fig. 1.

3. EXPERIMENTAL SETUP

3.1. Datasets, pre-processing, and augmentation

Our experiments focus on AVSpeech [26], one of the largest publicly
available audio-visual speech datasets. It contains ∼4,700 hours
of video, featuring ∼150,000 different subjects and 11+ languages.
The scale and heterogeneity of the data make for a substantially more
challenging than many commonly-used corpora such as GRID [7,
12, 27] or Facestar [12], which are recorded in studios.



We sample background noise from the Deep Noise Supression
challenge [28] noise dataset. It contains roughly 70,000 noise clips,
amounting to around 150 classes, ranging from music to machine
sounds. Both datasets are split into training, validation and testing
sets using a 80 – 10 – 10 % ratio. Due to the computational cost of
computing the evaluation metrics, we randomly sample 1 % of the
AVSpeech testing set, amounting to 1552 samples, and use this as
the evaluation set for our experiments. We add two types of cor-
ruption to the clean speech: background noise (denoted ‘noise’) and
background speech (denoted ‘interference’). The corruption level
is controlled by the Signal-to-Noise Ratio (SNR) and the Signal-to-
Interference Ratio (SIR):

SNR =
Psignal

Pnoise
, SIR =

Psignal

Pinterference
, (7)

where P refers to the power of each waveform. The interfering
speech is also obtained from AVSpeech. During training, the SNR
and SIR are independently randomly sampled between 5 and -15 dB.
The number of background noises and interfering speakers in each
sample varies randomly from 1 to 5 and 1 to 3, respectively. During
validation, we propose three different noise conditions to compare
with other methods, ranging from least to most noisy. Noise con-
ditions 1 (low), 2 (medium), and 3 (high) feature 1, 3, and 5 back-
ground noises at 0, -5, and -10 dB SNR, and 1, 2, and 3 background
speakers at 0, -5, and -10 dB SIR, respectively.

The noisy and clean signals are normalized via peak normaliza-
tion, and are converted into log-scale mel-spectrograms using the
following parameters: frequency bin size and Hann window size
1024, hop size 256 and 80 mel bands. The audio sampling rate is
16 kHz and the video frame rate is 25 frames per second (fps). To
model the speaker’s lip movements, we extract the 96×96 grayscale
mouth Region Of Interest (ROI) from each video, following [6, 22].
To augment our data, we apply random cropping, random horizontal
flipping, random erasing, and time-masking, as in [6].

3.2. Evaluation metrics
We evaluate our results using a set of five objective speech met-
rics. To measure speech quality, we use Mean Cepstral Distance
(MCD) [29], the wideband version of Perceptual Evaluation of
Speech Quality (PESQ-WB) [30], and Virtual Speech Quality Ob-
jective Listener (ViSQOL) [31]. To measure intelligibility we use
Short-Time Objective Intelligibility (STOI) [32] and its extended
version ESTOI [33]. Finally, in our spectrogram inversion compar-
ison, we also measure the mean squared error between the STFT
magnitudes of each signal and refer to this as Spec. MSE. Following
other works [8, 10], we denote improvements between noisy and
enhanced speech metrics with the lowercase ‘i’, e. g., PESQ-WB i.

3.3. Comparison models
We compare our results with two recent AVSE models: Visu-
alVoice [9], a complex spectral masking approach originally pro-
posed for speech separation that we adapt to perform enhancement,
and Multi-modal Speaker Extraction (MuSE) [8], a feature mask-
ing approach based on Conv-TasNet [10]. To provide a broader
comparison with other reconstruction techniques, we also adapt two
recent speech enhancement models for AVSE - Gated Convolutional
Recurrent Network (GCRN) [2] and Demucs [3]. We achieve this by
adding a visual stream (3D front-end + ResNet-18, as in our model)
which encodes the video into temporal features that are concatenated
with the audio features from the original audio encoder (preceding
the LSTM/GLSTM). We refer to these models as AV-GCRN and

AV-Demucs. We also compare with the original audio-only GCRN
and an audio-only version of LA-VocE to highlight the importance
of the visual stream. All models are implemented based on official
open-source code.

3.4. Training details
We train our spectrogram enhancer for 150 epochs using AdamW [34]
with learning rate 7× 10−4, β1 = 0.9, β2 = 0.98 and weight decay
3 × 10−2. We increase the learning rate for the first 15 epochs
using linear warmup, and then apply a cosine decay schedule [35].
To train MuSE, we replace the original SI-SDR objective [8] with
the loss from Demucs (L1 + multi-resolution STFT [3]), as we find
this increases training stability and yields better results. We train
an audio-only version of LA-VocE by removing the visual encoder
and changing the attention dimension and the number of heads in
the transformer to 256 and 8, respectively. We train HiFi-GAN for
roughly 1 million iterations on AVSpeech using AdamW with learn-
ing rate 2×10−4, β1 = 0.8, β2 = 0.99 and weight decay 1×10−2,
decaying the learning rate by a factor of 0.999 every epoch.

4. RESULTS

4.1. Comparison with other works
We compare with previous state-of-the-art methods in Table 1, and
present a demo of these results on our project website1. For noise
condition 1, LA-VocE outperforms other approaches in quality and
intelligibility, achieving significant improvements across all metrics.
Indeed, even in this less noisy scenario, our vocoder-based approach
is able to reproduce the target speech more accurately than mask-
based methods such as MuSE [8] and VisualVoice [9], which are
designed for separation with one to two background speakers. Pre-
vious AVSE methods yield decreased improvements for noise con-
dition 2, particularly for speech quality metrics such as PESQ and
ViSQOL, while LA-VocE yields significant gains in quality and es-
pecially intelligibility, as indicated by ESTOI i. This shows that de-
spite identical training conditions, previous methods adapt poorly to
lower SNR / SIR conditions compared to our new model.

Finally, on the noisiest scenario (noise condition 3), it is clear
that other audio-visual methods, including mapping-based ap-
proaches (AV-GCRN [2] and AV-Demucs [3]), are unable to increase
speech quality, achieving effectively no improvement on PESQ-WB
and small increases on other metrics. LA-VocE, on the other hand,
can still achieve significant gains in all metrics, indicating that it is
substantially more robust to extremely low-SNR scenarios. Notably,
both audio-only models (GCRN [2] and LA-VocE) yield poor results
in all scenarios - without visual information, these models cannot
accurately distinguish target speech from background speech.

4.2. Noise and interference study
We study our model’s performance in Table 2 by varying the SNR
and SIR between 5 dB and -15 dB (as in training), while keeping
the number of background noises and interfering speakers fixed at 3
and 2, respectively. On the left, we can see that PESQ-WB i peaks
for higher SNR / SIR conditions and deteriorates as the noise and
interference increase. This suggests that the model excels at im-
proving speech quality for higher SNR / SIR, even with the higher
PESQ baseline, but struggles to achieve substantial gains when the
environment becomes too noisy. On the other hand, ESTOI i is sub-
stantially more consistent across all conditions, and is in fact higher

1https://sites.google.com/view/la-voce-avse



Table 1. Comparison between LA-VocE and other speech enhance-
ment methods for different noise conditions. In the second column,
“A” and “AV” stand for audio-only and audio-visual, respectively.

Method Input MCD i ↓ PESQ-WB i ↑ ViSQOL i ↑ STOI i ↑ ESTOI i ↑

Noise condition 1 (1 background noise at 0 dB SNR + 1 interfering speaker at 0 dB SIR)

GCRN [2] A 0.410 0.044 0.093 -0.052 -0.038
AV-GCRN [2] AV -1.193 0.394 0.499 0.220 0.235
AV-Demucs [3] AV -5.581 0.738 0.688 0.270 0.298
MuSE [8] AV -5.528 0.787 0.679 0.276 0.299
VisualVoice [9] AV -3.781 0.606 0.645 0.249 0.270
LA-VocE (audio-only) A -3.189 0.248 0.135 0.055 0.047
LA-VocE AV -6.653 0.931 1.100 0.294 0.333

Noise condition 2 (3 background noises at -5 dB SNR + 2 interfering speakers at -5 dB SIR)

GCRN [2] A -0.416 -0.010 0.163 -0.015 -0.015
AV-GCRN [2] AV -1.354 0.096 0.398 0.234 0.214
AV-Demucs [3] AV -5.548 0.274 0.426 0.308 0.300
MuSE [8] AV -5.314 0.297 0.409 0.308 0.289
VisualVoice [9] AV -3.388 0.164 0.367 0.253 0.237
LA-VocE (audio-only) A -2.817 0.056 0.087 0.066 0.043
LA-VocE AV -6.863 0.511 0.700 0.379 0.397

Noise condition 3 (5 background noises at -10 dB SNR + 3 interfering speakers at -10 dB SIR)

GCRN [2] A -0.414 -0.015 0.210 -0.020 -0.005
AV-GCRN [2] AV -1.263 -0.043 0.217 0.171 0.139
AV-Demucs [3] AV -4.866 0.013 0.298 0.262 0.230
MuSE [8] AV -4.185 0.011 0.242 0.231 0.182
VisualVoice [9] AV -2.518 -0.045 0.248 0.181 0.160
LA-VocE (audio-only) A -1.982 -0.015 0.073 0.032 0.008
LA-VocE AV -6.170 0.159 0.447 0.371 0.358

Table 2. LA-VocE’s performance for different SNR / SIR conditions
with 3 background noises and 2 interfering speakers.

PESQ-WB i ↑ ESTOI i ↑

SNR (dB) 5 0 -5 -10 -15 5 0 -5 -10 -15

5 0.970 0.876 0.715 0.486 0.245 0.269 0.316 0.356 0.375 0.362
0 0.904 0.795 0.630 0.411 0.210 0.327 0.354 0.375 0.378 0.355

SI
R

(d
B

)

-5 0.789 0.679 0.511 0.319 0.136 0.386 0.394 0.397 0.383 0.349
-10 0.617 0.523 0.405 0.248 0.092 0.429 0.426 0.414 0.388 0.344
-15 0.438 0.383 0.289 0.195 0.081 0.443 0.433 0.414 0.381 0.330

for -15 dB SNR / SIR than it is for 5 dB SNR / SIR. Indeed, LA-
VocE achieves impressive improvements in intelligibility even for
-15 dB SNR / SIR, where the target speech is entirely imperceptible
for human listeners. This is consistent with our perceptual evalua-
tion - LA-VocE consistently produces intelligible audio despite the
noticeable artifacts for lower SNR / SIRs.

Remarkably, LA-VocE performs better for lower SIRs compared
to lower SNRs, e. g., 5 dB SNR / -15 dB SIR substantially outper-
forms -15 dB SNR / 5 dB SIR on both metrics. This disparity is
likely due to the nature of these two signals. Speech typically has a
consistent frequency range, and often contains gaps that the model
can easily exploit, while noise is substantially more heterogeneous,
ranging from impulses to continuous noises, presenting a greater de-
noising challenge. We also evaluate our model’s ability to perform
enhancement under multiple noise sources and background speakers
in Table 3, keeping the SNR / SIR at -5 dB. Unsurprisingly, we find
that the best PESQ-WB i is achieved with 1 noise and 1 speaker, and
becomes worse as they are increased. While it is expected that in-
creasing the number of sources will increase the complexity of the
background noise, therefore making the enhancement task more dif-
ficult, we hypothesize that the sharper drop in performance when in-
creasing the number of speakers is related to the temporal and spec-
tral gaps in the interference. A single stream of speech will contain
pauses that will ease denoising, but these disappear as we increase
the number of speakers, resembling continuous noise.

4.3. Spectrogram inversion comparison

Finally, we compare our trained HiFi-GAN with other spectro-
gram inversion methods in Table 4. We observe that our HiFi-

Table 3. LA-VocE’s performance for different numbers of back-
ground noises and interfering speakers (-5 dB SNR / SIR).

PESQ-WB i ↑ ESTOI i ↑

# noises 1 2 3 4 5 1 2 3 4 5

1 0.709 0.642 0.601 0.580 0.557 0.396 0.402 0.404 0.404 0.403

#
sp

k.

2 0.602 0.553 0.511 0.497 0.482 0.396 0.398 0.397 0.395 0.393
3 0.539 0.490 0.462 0.455 0.431 0.390 0.390 0.388 0.387 0.384

Table 4. Comparison between different spectrogram inversion meth-
ods for LA-VocE (noise condition 2). In the upper row, “Train.
corp.” stands for training corpus.

Method Train. corp. MCD i ↓ PESQ-WB i ↑ ViSQOL i ↑ STOI i ↑ ESTOI i ↑ Spec. MSE i ↓

Griffin-Lim [36] - -6.805 0.333 0.806 0.311 0.318 -7.855
Noisy phase - -6.640 0.461 0.721 0.305 0.310 -7.901
HiFi-GAN [20] VCTK -6.570 0.384 0.655 0.374 0.388 -7.773
HiFi-GAN [20] LJSpeech -6.601 0.432 0.670 0.370 0.382 -7.825
HiFi-GAN [20] AVSpeech -6.863 0.511 0.700 0.379 0.397 -7.939

GAN achieves better performance than existing pre-trained models2

(trained on VCTK [37] and LJSpeech [38], as presented in [20])
on all six metrics, highlighting the importance of training our own
vocoder on AVSpeech, rather than applying a publicly available
pre-trained model as in [6]. We also compare with Griffin-Lim [36],
a commonly-used spectrogram inversion algorithm, and experiment
by applying iSTFT using the phase from the noisy input to recon-
struct the waveform, as proposed in [7, 11]. In our experiments, both
methods consistently produce artifacts that make the resulting wave-
forms sound noticeably more robotic than those produced by neural
vocoders (this is particularly noticeable for Griffin-Lim). We show
that these inversion methods yield significant drops in PESQ-WB i,
STOI i, and ESTOI i, but surprisingly achieve competitive MCD i
and Spec. MSE i performance, and substantially better ViSQOL i.
This inconsistency likely implies that these three metrics are less
sensitive to the specific artifacts introduced by these phase esti-
mation strategies, and emphasizes the need for multiple evaluation
metrics when evaluating synthesized speech.

5. CONCLUSION

In this paper, we propose LA-VocE, a new framework for audio-
visual speech enhancement under low-SNR conditions. Our method
consists of two stages of training: audio-visual spectral enhance-
ment via a transformer-based encoder, and waveform synthesis via
HiFi-GAN. We train our model on thousands of hours of multilin-
gual audio-visual speech, and find that it significantly outperforms
previous state-of-the-art AVSE approaches, particularly for higher
noise conditions. We study LA-VocE’s performance under varying
levels of noise and interference, showing that even in the noisiest sce-
narios our vocoder-based approach can achieve large improvements
in speech intelligibility. Finally, we compare our vocoder with ex-
isting spectrogram inversion methods, highlighting the importance
of training our own HiFi-GAN. In the future, we believe it would
be promising to adapt our architecture for real-time synthesis, which
would enable speech enhancement in live video streams.
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