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ABSTRACT

Computed Tomography (CT) scans provide a high-resolution
image of the lungs, allowing clinicians to identify the severity
of infections in COVID-19 patients. This paper presents a
domain knowledge-based pipeline for extracting infection re-
gions from COVID-19 patients using a combination of image-
processing algorithms and a pre-trained UNET model. Then,
an infection rate-based feature vector is generated for each
CT scan. The infection severity is then classified into four cat-
egories using an ensemble of three machine-learning models:
Random Forest, Support Vector Machines, and Extremely
Randomized Trees. The proposed system is evaluated on the
validation and test datasets with a macro F1 score of 58%
and 46.31%, respectively. Our proposed model has achieved
3rd place in the severity detection challenge as part of the
IEEE ICASSP 2023: AI-enabled Medical Image Analysis
Workshop and COVID-19 Diagnosis Competition (AI-MIA-
COV19D). The implementation of the proposed system is
available at https://github.com/aanandt/Enhancing-COVID-
19-Severity-Analysis-through-Ensemble-Methods.git

Index Terms— COVID-19, CT-Scans, Infection Seg-
mentation, Machine Learning Methods, Severity Analysis

1. INTRODUCTION

The outbreak of COVID-19 has resulted in an urgent need
for prompt and precise diagnostic testing to detect individuals
who may have contracted the SARS-CoV-2 virus. Laboratory
tests such as Reverse Transcription Polymerase Chain Reac-
tion (RT-PCR) [1] and antigen tests are commonly used for
diagnosing COVID-19. While these tests detect the virus’s
presence from the respiratory samples [2], but fail to provide
an accurate analysis of the disease severity. Additional diag-
nostic tools are needed to assess the extent of lung infections.
Radiological imaging of the chest, including chest radiogra-
phy and CT scans, is essential to determine the severity of
COVID-19 infections [3]. At the same time, chest X-rays do
not provide sufficient resolution to evaluate the extent of lung
damage. CT scans provide a more detailed view of the lungs
to identify the distribution and area of infection. Clinicians
can comprehend vital information to gauge the severity of the

disease and deliver timely and effective treatment to the pa-
tients.

Table 1. Summary of the severity detection challenge dataset.
Category Train Val Description

Mild 133 31
Few GGOs. Pulmonary parenchymal

involvement ≤ 25% or absence

Moderate 124 20
GGOs. Pulmonary parenchymal

involvement 25 ≤ 50%

Severe 166 45
GGOs. Pulmonary parenchymal

involvement 50 ≤ 75%

Critical 39 5
GGOs. Pulmonary parenchymal

involvement ≥ 75%

Clinicians typically observe ground-glass opacities (GGO)
[4], which indicate lung inflammation but do not obstruct
the underlying pulmonary vessels. Consolidations are the
advanced stage of GGO and hide the underlying vessels [5].
Pleural effusion occurs when fluid accumulates excessively in
the pleural space surrounding the lungs and is a highly severe
case of COVID-19 [6]. These clinical features are critical
in identifying and diagnosing COVID-19 in patients [7]. In
addition to GGO and consolidations, features such as the halo
sign (central consolidations surrounded by GGO), the reverse
halo sign (central ground-glass lucent area with peripheral
consolidation), and crazy paving patterns are observed by the
clinicians [4, 8]. These features and their distribution pro-
vide crucial information to diagnose and manage COVID-19
patients.

Machine learning and deep learning methods have been
widely employed for classifying and segmenting infection re-
gions in CT scans. Several studies, including [9, 10, 11, 12],
have attempted to classify CT scans as COVID-19 or non-
COVID-19. Furthermore, some studies [13, 14, 15, 16] have
extended the classification task to include three categories
- COVID-19, Community-acquired Pneumonia (CAP), and
Normal. Since COVID-19 and CAP have similar clinical fea-
tures, it is essential to differentiate between these two cat-
egories to monitor the progression of COVID-19. Although
these methods have shown good results in classification, there
is a need to identify the severity of the patients. Many re-
search works have focused on infection region segmentation
from CT scans, which can aid in severity analysis. However,
generating large medical image datasets for infection segmen-



tation is time-consuming and requires expert annotation. Dif-
ferent strategies, such as semi-supervised [17, 18], weakly su-
pervised [19, 20], and unsupervised methods [21, 22], have
been proposed to address the unavailability of a large corpus.
Some works, such as [23, 24], have used the infection volume
to classify CT scans into healthy, mild, moderate, severe, and
critical categories.

The severity of COVID-19 patients is determined using
the Chest CT Severity Score (CTSS) method, as described in
[25]. This method assigns a score between 0 and 25 based
on the distribution and magnitude of abnormalities observed
on chest CT scans [26, 27]. In line with this approach, we
have developed a method that uses various image process-
ing algorithms and a pre-trained UNET model [28] to extract
infected regions from CT scans. We then propose a feature
vector based on the infection rate and use various machine-
learning models to predict the severity of chest CT scans.

The paper is organized as follows: Section 2 explains the
dataset used in the study. Section 3 presents the proposed
method for segmenting relevant clinical features and classi-
fying COVID-19 patients into different severity classes. Sec-
tion 4 discusses results and inferences. Finally, Section 5
summarizes the present study.

2. DATASET
The COVID-19-CT-DB dataset used in this study was pro-
vided as part of the ”AI-enabled Medical Image Analysis
Workshop, and COVID-19 Diagnosis Competition (AI-MIA-
COV19D)” [29, 30, 31, 32, 33, 34]. The CT scans were col-
lected between September 1, 2020, and March 31, 2021, and
were annotated by four experienced medical experts, includ-
ing two radiologists and two pulmonologists. The severity
detection challenge uses the subset of the COVID-19-CT-DB
dataset, and the summary of the dataset is shown in Table 1.

3. PROPOSED METHOD
The proposed method consists of two parts, lesion segmenta-
tion from the CT scan and quantifying the severity based on
the infection rate. The proposed pipeline uses various image
processing algorithms, machine learning, and deep learning
models to predict the severity score for COVID-19 patients.

3.1. Infection Segmentation

The infection segmentation pipeline uses domain knowledge
to extract the lesion areas. Initially, the lung region is ex-
tracted from the chest CT image using a pre-trained UNET
model. Then, the resultant image’s contrast is enhanced by
histogram hyperbolization [35]. Next, the pulmonary blood
vessels are enhanced using the top-hat morphological opera-
tion [36]. Finally, the resultant image is employed with mor-
phological operations to fine-tune the infection regions.
3.1.1. Lung Mask Generation

The chest CT scan contains the lung region and organs like the
trachea, diaphragm, heart, stomach, and tissues. This module

Fig. 1. First row represents CT scan images of mild, moder-
ate, severe, and critical categories provided in the challenge.
The second row shows the lung mask generated from the im-
ages. The third row depicts the segmented region of interest
for further analysis of each category.

extracts the lung region from the chest CT scan and removes
the unnecessary areas from further analysis. A pre-trained
UNET [28] model is used to extract the lung region from the
CT scan images. The UNET model is trained on the HU scale
CT images, but the challenge dataset CT scan images are in
JPG format. A linear transformation is applied to the JPG
images to make them compatible with the input format for
the UNET model.

The lung mask involvement accounts for variations in the
number of CT image slices across patients. An empirical
threshold on the lung mask’s involvement and a threshold on
the number of slices from the middle region (slice number
which lies between one-third to two-thirds of the total num-
ber of slices) are used to select the CT scan images for further
analysis. The segmented CT scan images are applied with
a Gaussian filter to smooth the image without significantly
reducing the sharpness of the edges. Further, this image is
fed into the image enhancement module. The lung masks
and extracted regions of interest from different categories of
COVID-19 severity are shown in Fig. 1.
3.1.2. Image Enhancement using Histogram Hyberbolization

Histogram hyperbolization, introduced in [35], is a non-linear
image enhancement method that improves the contrast of an
image by adjusting its perceived brightness levels. The pri-
mary objective of this approach is that it mimics the process
of vision and could correspond to the radiologist’s view of the
image.

J(I) = c(exp[log(1 + 1
c ) ∗ normcm[I]]− 1) (1)

where J(I) is the space-invariant hyperbolization trans-
formation of the image I . c is an empirical threshold.



Fig. 2. First row shows the histogram hyperbolized lung re-
gion of mild, moderate, severe, and critical classes. The sec-
ond row depicts enhanced blood vessels using top-hat trans-
form. The third row represents the extracted infection regions.

normcm is the normalized cumulative distribution of the
intensity histogram. The contrast-enhanced image contains
infection regions and the pulmonary vessels. The contrast-
enhanced lung region of the CT scan images using histogram
hyperbolization is shown in Fig. 2.

3.1.3. Morphological operations

The present work mainly uses three commonly-used morpho-
logical operations: dilation, opening, and top-hat [37]. A
kernel matrix (a rectangular kernel (3 x 3)) is used to con-
volve with the input image. The dilation operation chooses
the maximum pixel value from each (3 x 3) neighborhood and
replaces the center pixel. The erosion operation finds the min-
imum pixel value from the kernel neighborhood. The opening
morphological procedure removes small foreground objects
from the binary image by employing the erosion operation
followed by the dilation operation. The top-hat transforma-
tion enhances blood vessel-like structures by subtracting the
image from its opening morphological image. Foreground-
connected components are computed from the resultant im-
age, and a criterion on the size or area is applied to retain
these connected components.

The OTSU adaptive binarization method [38] is applied to
the contrast-enhanced image from the previous module. Mor-
phological operation top-hat transform is applied to enhance
and remove the blood vessels. The resultant image contains
blob-like structures while removing the blood vessels and are
removed by the area-based connected components method.
The dilation operation is employed to fine-tune the boundary
of the extracted infection region. The enhanced blood ves-
sels and infection masks generated from the different severity
classes are shown in Fig. 2.

3.2. Lesion To Severity Score

This section describes the various methods explored to iden-
tify the correlation between the infection regions in the CT
images and their severity class. Inspired by the CTSS method,
a weighted average on the percentage of infection in the left
and right lungs is estimated. Further, various machine learn-
ing algorithms are experimented with to classify the CT scan
into different severity classes.

3.2.1. Weighted Average Method (WAM)

The infection rate in the left and right lungs are estimated
separately for each slice in the CT scan with the help of the
infection mask and the generated UNET lung mask. In CTSS
estimation, the right lung is divided into three lobes and the
left into two lobes, and the radiologist visually determines
each lobe’s degree of involvement. The lobe scores are calcu-
lated by the percentage of infection involvement in each lobe
[39]. The CTSS is estimated by aggregating the average score
lobe across the CT scan slices. In the WAM, a score ranging
from one to four is assigned based on the rate of infection,
one (0- 25% ), two (25 - 50% ), three (50 - 75% ), and four
(75 - 100 % ). A weighted average method is employed to
determine the severity score for each CT scan slice. The right
lung region score is multiplied by a weight of three and the
left lung region score by two. The severity score is estimated
by averaging the scores across the CT scan images.

3.2.2. Non-linear Methods

Each CT scan image is represented by the infection rates of
the left and right lungs, resulting in an 80-dimensional fea-
ture vector for each patient’s scan. Two methods are em-
ployed for fixed-length feature representation: for CT scans
with more than 40 slices, the slices are uniformly divided into
forty regions, and the median slice features are selected from
each region; for CT scans with fewer than 40 slices, the fea-
ture vector is enhanced by computing the average infection
rate from the available slices and appending it to generate an
80-dimensional vector. Machine learning models, including
logistic regression (LR), decision tree (DT), gradient boost
(Gboost), extreme gradient boosting (XGboost), Ada boost,
k-nearest neighbor (kNN), naive Bayes (NB), random forest
(RF), extremely randomized tree (ERT) [40], support vector
machine (SVM), and voting based ensemble models, are em-
ployed to learn from these feature representations to predict
the severity classes. The machine learning models are imple-
mented with the help of the sklearn library in Python.

4. RESULTS AND DISCUSSIONS

The proposed method aims to identify the correlation between
the lung infection rate and the severity class. The weighted
average method (WAM) discovers a linear mapping between
the infection rate and the severity classes, which yielded a
macro F1 score of 33%. This result led to the realization of



Table 2. The severity analysis of various machine learning classifiers using validation dataset CT scans.

Models WAM DT LR Adaboost Gboost NB kNN XGboost RF ERT SVM Ensemble
Precision 0.42 0.36 0.40 0.43 0.61 0.51 0.57 0.64 0.65 0.69 0.71 0.68

Recall 0.36 0.37 0.45 0.52 0.43 0.61 0.51 0.51 0.52 0.56 0.56 0.55
F1 score 0.33 0.36 0.41 0.45 0.45 0.48 0.52 0.54 0.55 0.59 0.59 0.58

Fig. 3. The first row (from left to right) depicts the confusion matrices of the WAM, DT, LR, Adaboost, Gboost, and NB. The
second row represents the kNN, XGboost, RF, ERT, SVM, and Ensemble (RF, ERT, SVM) classifiers. The axis labels such as
Mi-mild, Mo-moderate, Se-severe, and Cr-critical.

the non-linear relationship of the infection rate-based sever-
ity analysis, prompting the exploration of various machine-
learning methods. The results of various classifiers are shown
in Fig. 3 and tabulated in Table 2.

The machine learning models achieve better results (re-
garding macro F1 score) than the WAM. The RF, ERT, and
SVM serve top-3 performing models for the severity analysis.
The ensemble model can improve the accuracy and robustness
of predictions, reduce over-fitting, and improve the model’s
generalization. The proposed pipeline works well, and it has
some class misclassification issues. The confusion matrices
show that the mild class achieves higher classification accu-
racy and less misclassification with other classes. In the case
of the moderate category, more misclassifications towards the
severe category; the SVM, Ensemble, and RF models provide
more misclassifications to the severe category than the mild
category. Similarly, the severe class CT scans are misclassi-
fied into the mild and moderate classes. We have observed
that the boundary detector has issues in some severe cases;
appropriate domain information is required to improve lung
segmentation accuracy.

The standard evaluation metrics, such as precision, recall,
and macro F1 score, are used to evaluate the models. Preci-
sion refers to the proportion of true positives among all pre-
dicted positive instances. Recall measures the proportion of
true positives among all actual positive instances. The Macro
F1 score is a harmonic mean of precision and recall, providing
an overall measure of model performance across all classes. It
considers false positives and negatives and is a valuable met-
ric for imbalanced classes. The performance of linear and

non-linear classifiers is shown in Table 2. The baseline model
is based on a convolutional neural network (CNN)- recurrent
neural network (RNN) where the CNN is used as a feature
extractor, and RNN is used to model the sequence of fea-
tures extracted from the CT scan images. The baseline model
achieved a macro F1 score of 38% in the validation data. It
is observed from the Table 2 that all non-linear models, ex-
cept the decision tree, outperformed the baseline model. A
voting-based ensemble model (RF, ERT, and SVM) achieves
the macro F1 score of 46.31% and performs better than the
baseline model (40.06%) on the challenge test dataset.

5. CONCLUSION

The current study proposes a domain knowledge-based pre-
processing pipeline to extract relevant lesion regions from
chest CT scans. Further, a novel set of infection rate-based
features is generated. Machine learning models are trained
with these features to predict the patient’s COVID-19 infec-
tion severity. A voting-based ensemble model comprising
Random Forest (RF), Extremely Randomized Trees (ERT),
and Support Vector Machine (SVM) achieved a macro F1
score of 58% on the validation data and 46.31% on the test
data.
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