INTRODUCTION

- Emotional expressions are a fundamental \bullet component of spoken interaction.
- However, recognizing emotions in speech remains a challenging problem.

the Softmax function.

• However, our labels contain a certain degree of ambiguity that we need to address.

Brno University of Technology, Faculty of Information Technology, Speech@FIT, Czechia

- Sofoklis Kakouros University of Helsinki, Finland
 - Themos Stafylakis
- Omilia Conversational Intelligence, Athens, Greece
 - Ladislav Mošner
 - Brno University of Technology, Faculty of Information Technology, Speech@FIT, Czechia

Lukáš Burget

Correlation pooling

RESULTS

Experiments run on **IEMOCAP**

SPEECH-BASED EMOTION RECOGNITION WITH SELF-SUPERVISED MODELS USING ATTENTIVE CHANNEL-**WISE CORRELATIONS AND LABEL SMOOTHING**

- What kind of <u>acoustic representations</u> are ullet*best for speech emotion recognition?*
- *How can we best model* the long <u>temporal context</u> over which emoti ons take place?
- *How can we best tackle the problem* of <u>ambiguous labels</u> for the emotions?

STANDARD POOLING METHODS

- Emotion recognition is an <u>utterance-level</u> task.
- Frame-level pooling: ullet

1. Mean

- 2. Standard deviation
- 3. Mean + standard deviation

Can we do things better and capture more informative representations from the successive frames?

LABEL SMOOTHING

- With label smoothing we soften the hard (one-hot) targets vectors.
- The aim of label smoothing is to reduce the confidence of the classifier on the target labels.
- Label smoothing replaces the one-hot encoded labels with a mixture of the one-hot encoded labels and the uniform distribution.
 - One-hot encoded labels maximize logit gaps that are fed into the Softmax function.
 - On the other hand, smoothed labels, lacksquareencourage smaller logit gaps, thus reducing the confidence for the targets.

ARCHITECTURE

- 5-fold cross-validation
- Our method yields results that surpass those on the benchmark setup of SUPERB
- SUPERB reports an accuracy of 70.62% with WavLM and 67.62% with HuBERT
- With our proposed approach we obtain 75.60% and 73.86% respectively

 Table 1. Unweighted accuracy (% mean and std) between test

sets for SER in IEMOCAP using HuBERT large, Wav2vec 2.0, and WavLM large self-supervised representations.

,	0 1	1	
Pooling method	HuBERT	Wav2vec 2.0	WavLM
mean	65.73 (2.73)	66.86 (1.76)	69.44 (1.53)
mean-std	69.15 (1.61)	69.92 (1.17)	72.56 (1.67)
$\operatorname{corr}(p_d=0)$	69.82 (1.35)	68.44 (1.85)	72.34 (1.54)
corr ($p_d = 0.25$)	69.72 (1.19)	67.85 (1.84)	72.27 (1.45)
corr attentive	73.86 (2.10)	70.01 (2.20)	75.60 (2.33)

CORRELATION POOLING

- Modelling correlations between channels.
- We first reduce the number of channels from 1024 to 256 using a learnable linear layer.
- Then, average pooling of the frame-wise outer products \Rightarrow correlation matrix:

 $\mathbf{C} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{o}_t \mathbf{o}_t'$

But emotion information does not appear *uniformly across our signals*. What can we do?

ATTENTIVE CORRELATION POOLING

• We introduce a new flavor of attention by inserting weights in the estimates of the statistics:

 $\boldsymbol{\mu} = \sum w_t \mathbf{v}_t, \ \boldsymbol{\Sigma} = \sum w_t (\mathbf{v}_t - \boldsymbol{\mu}) (\mathbf{v}_t - \boldsymbol{\mu})'$

Our setup is based on **SUPERB**-**Speech processing Universal PERformance Benchm** ark

- SUPERB is a collection of ulletbenchmarking resources to evaluate the capability of a universal shared representation for speech processing
- We extract embeddings from all transformer layers:

Figure: Attentive correlation pooling with WavLM

CONCLUSIONS

- SER framework that uses self-supervised representations and is based on label smoothing and a novel approach to attention: attentive correlation pooling.
- Our method does not require fine-tuning of the pre-trained SSL models but rather uses a light-weight classification head.

- The proposed attention enables us:
 - to keep the multi-modality of multi-head attention since a single head is too weak to capture the phonetic, speaker, emotion and channel variability,
 - to robustly estimate the attention by aggregating the matrix similarities prior to
- HuBERT
- WavLM
- Wav2Vec 2.0
- Layer pooling
- Weigh embeddings
- Channel-wise dropouts
- Apply attention

- Our method reaches high performance in all pre-trained models tested surpassing that of the literature in similar tasks.
- **Next steps**: extend the evaluation setup and validate the performance of our method on more datasets.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HUMANISTINEN TIEDEKUNTA HUMANISTISKA FAKULTETEN FACULTY OF ARTS