

Dynamic source localization and functional connectivity estimation with state-space models: preliminary feasibility analysis

Motivation

- Lack of efficient algorithms for solving large-scale state space models (SSMs).
- Solving the MEG/EEG brain source localization and functional connectivity (FC) problems with SSMs.
- Create semi-realistic large-scale (twin digital) brain models.

Background and Importance

- Source localisation and FC studies increase our understanding of brain information processing.
- Existing shortcomings of analytical tools bias our knowledge and limit potential applications.
- Better understanding of cognitive functions can be critical for developing new deep learning models.

Outcome

- Developed algorithms for solving the brain source localisation and FC problems simultaneously.
- This methodology has been demonstrated with large-scale simulations and real EEG data.

SSMs based on MVAR models:

1)
$$\mathbf{y}_t = \mathbf{B}\mathbf{x}_t + \mathbf{w}_t$$
; with $\mathbf{w}_t \sim N(0, \sigma_o^2 \mathbf{I}_M)$,

(2)
$$\mathbf{x}_t = \sum_{p=1}^P \mathbf{A}_p \mathbf{x}_{t-p} + \mathbf{v}_t$$
; with $\mathbf{v}_t \sim N(0, \sigma_s^2 \mathbf{I}_N)$,

where $\mathbf{y}_t \in \mathbb{R}^{M \times 1}$ and $\mathbf{x}_t \in \mathbb{R}^{N \times 1}$ represent the measurements and source dynamics, $t = p + 1, \dots, T$, and $\mathbf{A}_p \in \mathbb{R}^{N \times N}$ denotes the neuronal communication, $p = 1, \dots, P$.

Jose Sanchez-Bornot^{1*}, Roberto C. Sotero², and Damien Coyle^{1,3*}

¹ Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, UK. ² Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. ³ Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom.

A-B) Brain source mapping. **C)** Estimation of sources time series. **D-F)** True and estimated FC maps.

A feasible brain model must combine "practical" realism with "usefulness" to solve tasks while proposing the brain architecture (known regional networks and functions) as framework to develop learning models.

Validation with simulated and real (population) EEG data 1. We simulate a population of 13 individuals with known "average" FC weights: Graph of interactions among the 5 simulated regions Simulated population autoregressive matrices Subject #1 Subject #2 (gp) ds -4 -6 20 30 40 50 20 30 40 50 10 0 Frequency (Hz) Frequency (Hz) 2. Analysis of the Wakeman and Henson's MEG/EEG dataset:

		1.1.1	
1 1 N	1 - 1 - 1 - 1 - 1 1 - 1 - 1		

Izhikevich, Eugene M., and Gerald M. Edelman. "Large-scale model of mammalian thalamocortical systems." Proceedings of the national academy of sciences 105.9 (2008): 3593-3598.

Sanchez-Bornot, Jose M., et al. "Solving large-scale MEG/EEG source localization and functional connectivity problems simultaneously using state-space models." arXiv preprint arXiv:2208.12854 (2022).

References:

Markram, Henry, et al. "Reconstruction and simulation of neocortical microcircuitry." Cell 163.2 (2015): 456-492.

Contacts Information:

Jose M. Sanchez Bornot: jm-sanchez-bornot@ulster.ac.uk Damien Coyle: <u>dhc30@bath.ac.uk</u>