Reducing the communication and computational cost of random Fourier features Kernel LMS in diffusion networks

Daniel G. Tiglea*, Renato Candido*, Luis A. Azpicueta-Ruiz[†], and Magno T. M. Silva*

*Universidade de São Paulo, Brazil [†]Universidad Carlos III de Madrid, Spain

June 2023

2 Proposed censoring mechanism

Introduction & Problem Formulation

• \mathcal{N}_k : neighborhood

1

- d_k : desired signal
- u_k : input signal

Introduction & Problem Formulation

 $f_{\rm o}[\cdot] \rightarrow$ nonlinear function (typically unknown *a priori*)

 $v_k(n) \rightarrow \text{measurement noise}$

2023 International Conference on Acoustics, Speech, and Signal Processing

1

Goal: estimation of $f_{\mathrm{o}}[\cdot]$ in a distributed manner

- signal measurement and processing done locally (adaptation)
- nodes communicate to form a global estimate (combination)

Goal: estimation of $f_{o}[\cdot]$ in a distributed manner

- signal measurement and processing done locally (adaptation)
- nodes communicate to form a global estimate (combination)

Advantages

- Robustness to communication link failure
- Flexibility
- Scalability

Random Fourier Features

Nonlinear mapping using Random Fourier Features¹:

$$\mathbb{R}^{M} \qquad \mathbb{R}^{D}, \ D > M$$
$$\mathbf{u}_{k}(n) = \begin{bmatrix} u_{k}(n) \\ u_{k}(n-1) \\ \vdots \\ u_{k}(n-M+1) \end{bmatrix} \qquad \underbrace{\mathsf{mapping}}_{k} \mathbf{z}_{k}(n) = \sqrt{\frac{2}{D}} \begin{bmatrix} \cos(\boldsymbol{\omega}_{1}^{\mathrm{T}} \mathbf{u}_{k}(n) + b_{1}) \\ \cos(\boldsymbol{\omega}_{2}^{\mathrm{T}} \mathbf{u}_{k}(n) + b_{2}) \\ \vdots \\ \cos(\boldsymbol{\omega}_{D}^{\mathrm{T}} \mathbf{u}_{k}(n) + b_{D}) \end{bmatrix}$$

• ω_i drawn from a multivariate Gaussian distribution w/ zero mean and covariance matrix $\frac{\mathbf{I}}{\sigma^2}$

• b_i drawn from $\mathcal{U}(0, 2\pi)$

¹ P. Bouboulis, S. Chouvardas, and S. Theodoridis, "Online distributed learning over networks in RKH spaces using random fourier features," IEEE Transactions on Signal Processing, vol. 66, no. 7, pp. 1920–1932, 2018.

The RFF-dKNLMS Algorithm

Censoring

• **Censoring** in diffusion networks: reducing the number of transmissions during the combination steps

Motivations

- Energy savings (critical in WSNs)
- Computational cost reduction (critical when the number of RFFs is large)

Feasibility of Kernel-Based Adaptive Diffusion Networks

Goals

- censor nodes while preserving performance
- keep nodes when the error is high, censor them otherwise

• uncensored • censored

2 Proposed censoring mechanism

Modifying the RFF-dKNLMS algorithm

Modification: introduction of $\overline{s}_k(n) \in \{0, 1\}$

$$\begin{cases} \boldsymbol{\theta}_k(n+1) = [1 - \overline{\boldsymbol{s}_k}(n)] \boldsymbol{\theta}_k(n) + \overline{\boldsymbol{s}_k}(n) [\boldsymbol{\psi}_k(n) + \mu_k(n) \mathbf{z}_k(n) e_k(n)] \\ \boldsymbol{\psi}_k(n+1) = \sum_{j \in \mathcal{N}_k} c_{jk} \boldsymbol{\theta}_j(n+1) \end{cases}$$

Modifying the RFF-dKNLMS algorithm

If $\overline{s}_k(n) = 0$ (node k is censored):

$$\begin{cases} \boldsymbol{\theta}_k(n+1) = \boldsymbol{\theta}_k(n) \\ \boldsymbol{\psi}_k(n+1) = \sum_{j \in \mathcal{N}_k} c_{jk} \boldsymbol{\theta}_j(n+1) \end{cases}$$

- Nodes store local estimates sent by their neighbors at past iterations
- No need for node k to broadcast θ_k again
- ↓ Transmissions
- Computational savings

Modifying the RFF-dKNLMS algorithm

If $\overline{s}_k(n) = 1$ (node k is uncensored):

$$\begin{cases} \boldsymbol{\theta}_k(n+1) = \boldsymbol{\psi}_k(n) + \mu_k(n) \mathbf{z}_k(n) e_k(n) \\ \\ \boldsymbol{\psi}_k(n+1) = \sum_{j \in \mathcal{N}_k} c_{jk} \boldsymbol{\theta}_j(n+1) \end{cases}$$

• Adaptation and combination are performed as usual

Calculating $\overline{s}_k(n)$

Introducing $\alpha_k(n)$ such that

$$\bar{s}_k(n) = \begin{cases} 1, \text{ if } \alpha_k(n) > 0\\ 0, \text{ otherwise} \end{cases}$$

$$J_{\alpha,k}(n) = [\phi_k(n)]\beta\bar{s}_k(n) + [1-\phi_k(n)]$$

 $\sum_{\substack{j \in \mathcal{N}_k}} c_{jk} e_j^2(n)$ (weighted error in \mathcal{N}_k)

- $\beta>0$ is used to penalize transmissions
- $\phi_k(n) = \phi[\alpha_k(n)]$ is a sigmoid function

2023 International Conference on Acoustics, Speech, and Signal Processing

Understanding the cost function

2023 International Conference on Acoustics, Speech, and Signal Processing

11

Calculating $\overline{s}_k(n)$

By taking $rac{\partial J_{lpha,k}(n)}{\partial lpha_k(n)}$ and applying the gradient method:

$$\alpha_k(n+1) = \alpha_k(n) + \mu_{s_k}(n)\phi'_k(n) \left[\sum_{j \in \mathcal{N}_k} c_{jk}\varepsilon_j^2(n) - \beta_k(n)\overline{s}_k(n)\right]$$

- $\mu_{s_k}(n):$ step size
- ε_j : last measurement of e_j

•
$$\beta_k(n) = \gamma \hat{\sigma}_{\mathcal{N}_k}^2(n)^2$$

Adaptive Censoring RFF-dKNLMS

² T. Strutz, "Estimation of measurement-noise variance for variable-step-size NLMS filters," in Proc. of European Signal Processing Conference (EUSIPCO), 2019.

Proposed censoring mechanism

4 Conclusions

Simulation Conditions

•
$$\widetilde{\mu}_k = 1$$
 for every k , $k = 1, \cdots, V$

• c_{jk} following the Metropolis rule

For details, please refer to the published paper

Comparison with other censoring techniques

• V_s nodes randomly uncensored every iteration and COKE³

³ P. Xu, Z. Tian, Z. Zhang, and Y. Wang, "COKE: Communication-censored kernel learning via random features," in 2019 IEEE Data Science Workshop (DSW). IEEE, 2019, pp. 32–36.

Proposed censoring mechanism

Conclusions

- AC-RFF-dKNLMS vs. RFF-dKNLMS with all nodes uncensored:
 - Same convergence rate and steady-state performance
 - Computational cost: \uparrow during transient, $\downarrow\downarrow$ during steady state
 - Nodes censored in steady state: energy savings

- AC-RFF-dKNLMS vs. COKE:
 - Same steady-state performance
 - Slightly faster convergence rate
 - Less computational cost

Acknowledgements

Thank you!

Acknowledgements:

- National Council for Scientific and Technological Development (CNPq)
- National Council for the Improvement of Higher Education (CAPES)
- São Paulo Research Foundation (FAPESP)
- Spanish Ministry of Science and Innovation (MICINN)