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ABSTRACT

Image retrieval has garnered a growing interest in recent
times. The current approaches are either supervised or self-
supervised. These methods do not exploit the benefits of
hybrid learning using both supervision and self-supervision.
We present a novel Master Assistant Buddy Network (MAB-
Net) for image retrieval which incorporates both the learning
mechanisms. MABNet consists of master and assistant block,
both learning independently through supervision and collec-
tively via self-supervision. The master guides the assistant
by providing its knowledge base as a reference for self-
supervision and the assistant reports its knowledge back to the
master by weight transfer. We perform extensive experiments
on the public datasets with and without post-processing.

Index Terms— Image Retrieval, Supervision, Self-
Supervision, MABNet, ViT

1. INTRODUCTION

Image retrieval refers to the task of returning relevant in-
stances from a database given an unlabeled query image. This
task can be targeted in both supervised and self-supervised
manners. Supervised methods forms better decision bound-
aries owing to the ground truth and are commonly based on
Convolutional Neural Network (CNN) like ResNets [1-12]
since they can extract image-level descriptors.

Recently, self-supervised learning has emerged to address
the image retrieval task [13, 14]. DINO [13] exploits the
attention mechanism of Vision Transformer (ViT) for self-
supervision such that its knowledge model contains explicit
information about the semantic segmentation of an image.

Supervision and self-supervision has their own advan-
tages and the current literature has not explored the use of
both in image retrieval task. Self-supervision will comple-
ment the supervised approach with explicit semantic segmen-
tation improving the decision boundaries. We propose Mas-
ter Assistant Buddy Network (MABNet), a novel model that
employs both supervised and self-supervised learning mecha-
nisms, thereby incorporating the advantages of both learning
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paradigm. MABNet is a two-block buddy network (see Fig.
1), where one is master and the other is assistant. Both learn
individually via supervised learning. In addition, they com-
pare their latent features for self-supervision using a distance
metric where the assistant uses the master’s latent features as
a reference for self-supervision. The weights of the master
block are later updated by the assistant’s knowledge model
via weight transfer. In this sense, the assistant network shares
the learning load, performs self-supervision, and assists the
master with a comprehensive knowledge model. Further, the
master and the assistant divide the focus of learning where
the master uses both global and local image crops, whereas
the assistant specializes in global crops.

Convolution is a local operator whereas transformer is a
global operator that considers all the pixels and applies atten-
tion to find the important features. It is known that effective
receptive fields of lower layers for ViTs are much larger than
ResNets, which helps them to incorporate more global infor-
mation than CNNs [13, 14]. Hence we employ ViT for both
the master and the assistant blocks.

Several methods apply various post-processing tech-
niques like Average Query Expansion (AQE) [15], heat dif-
fusion [16], offline diffusion [17] and CVNet-Rerank [10] to
obtain the final solution by generating a ranked list of sim-
ilar images. Thus we classify the image retrieval models in
two categories: model without post-processing techniques
and model with post-processing techniques. Some mod-
els [6-9] also include post-processing as part of their end-to-
end pipeline, thus we classify them in the later category.

Contributions (1) We introduce the MABNet framework,
which exploits both the supervised and the self-supervised
learning paradigm. (2) We propose the use of the master
and the assistant block with the master focusing on general
knowledge learning and the assistant helping the master to
refine its knowledge base through weight transfer. (3) We
categorize all the image retrieval models in either with or
without post-processing approaches. We train MABNet on
the GLDv2-train-clean (GLDv2-TC) [18] dataset and demon-
strate its efficacy on popular benchmark datasets, namely Ox-
ford (Ox5k and Ox105k) [19], Paris (P6k and P106k) [20],
Revisited Oxford (ROx(M) and ROx(H)) [21] and Revisited
Paris (RPar(M) and RPar(H)) [21] in both the categories.
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Fig. 1. Training architecture (Upper part): The architecture of the master assistant buddy network (MABNet). Global crops are
fed to assistant block while both local and global crops are used for master block to generate assistant and master embedding,
respectively, from Generalized Mean Pooling (GEM) layer. KL divergence loss is calculated over these embeddings. The
embedding are then passed through a fully connected layer to get predictions, over which ArcFace loss is applied. After each
epoch, the weights of master block are updated by weight transfer. Testing architecture (Lower part): The predictions at test
time are only performed via the master block. The original input image and its global and local crops are passed to the trained
master block to get the embedding from the GEM layer. The concatenation of these embeddings are then compared with the
embedding of the images from database with a similarity function (any post-processing method) to retrieve k best images.

2. METHOD

The proposed MABNet (see Fig. 1) consists of two blocks:
the master block and the assistant block. Both the blocks have
the backbone of ViT (can be any architecture like ResNet) de-
noted by V' but with different parameters 6,,, and 6, respec-
tively. The role of master is to perform image retrieval while
focusing on local spatial context but retaining global context
as well and the role of assistant is to assist the master block by
providing global spatial information through weight sharing,
thereby enriching the representations learned by the master.
In MABNet, instead of passing the original input image x
to the network directly, we create multiple crops of the input
image using the multi-crop method. We refer to the crops
covering less than 50% of the original image as local crops
(denoted by ('), and all other crops as global crops (Cg).
The master receives all the crops, whereas only the global
crops are passed through the assistant. For an input image
x, we get two embedding F,, and F, from the GEM layer
corresponding to the master and assistant blocks, respectively.
The KL divergence loss is calculated between the embed-
dings E,,, and E,. A fully-connected linear layer transforms
the embeddings to the corresponding output labels. We em-
ploy ArcFace to get the supervised loss of each block. The
gradient of the each block with respect to the ArcFace loss
flows independently and with respect to KL loss flows collec-
tively. Further, we employ a weight sharing technique from
assistant to master, to update the master block’s knowledge

model. The final prediction is the output of the master since
it captures more generalized information than the assistant.

Weight Transfer Both the blocks learn their weights by
back-propagation via the two losses, self-supervised KL di-
vergence loss and supervised ArcFace loss. In addition to
gradient descent, the weights of the master block are updated
by the weighted average of master and assistant parameters as
Om = N, + (1 — \)0,, where A is the weight transfer pa-
rameter. The value of X is determined by grid approach and
isintherange 0 < A < 1.

Testing Phase For inference, we feed forward the input
image and all its crops, i.e., Cg and Cp, through the mas-
ter block to get the embeddings coming from the GEM layer.
Therefore, we have C+C+1 embeddings. We concatenate
all of them. The embedding size for each image is 512. Then
we train a simple KNN over these embeddings and get the
nearest neighbours of the input image. Alternatively, we can
use any post-processing techniques to get the final solution by
generating a ranked list of similar images in the dataset.

Model Working Figure 2 shows an example of the pro-
gressive learning of master and assistant block. The master
embedding are more general and spread initially since it sees
both the global and local crops. The assistant embedding is
also spread but only to a part of the image depending on the
global crops passed to it. But the assistant block compares its
notes with the master block using self-supervision and hence
learns the localised information. This can be seen by the heat
maps in the later epochs as it becomes more focused at one
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Fig. 2. (a) The superimposed heat map of the the original im-
age after every 10 epochs from both the master and the assis-
tant embedding is generated using Grad-CAM till 60 epochs.
(b) Top 5 retrieved image for the original query image. We
also show the top 6 retrieved image which is a failure case.
The left and right heat map is from the master embedding for
the top 1 retrieved image and the failure case, respectively.
This result is on Ox105k dataset without post-processing.

particular area. The master block in turn gets this localised
information from assistant block in the form of the weight
transfer and thus becomes more focused in the later epoch
forming better decision boundary. Example of retrieved im-
ages is shown in the lower panel of Fig. 1 and Fig. 2(b).

Setup We take 2 global and 8 local crops of random size.
Random rescale is performed within the range [0.5, 1] and
[0.05, 0.5] on global and local crops, respectively. The global
and local crops are resized to 224 x224 and 96 x96, respec-
tively. We use ViT-small pre-trained on ImageNet as the back-
bone. Input patch size of 16x 16 is flattened and projected to
M lower dimensional linear vectors. The location prior is
provided by adding trainable position encoding to the linear
embedding before feeding them to the transformer encoder.
The model is trained with 8 xV100s for 100 epochs with a
batch size of 256. We use AdamW optimizer with a learn-
ing rate of 0.0005 and a weight decay of 10~°. Furthermore,
we use a linear warm-up for the first 10 epochs, after which
the learning rate follows a cosine schedule. We use mixed-
precision training to speed up computation. A is setas 0.5. We
employ the standard mean average precision (mAP) metric to
report our accuracy. The training time on GLDv2-TC [18] is
2.5 days. The number of flops is 9.2 GFlops. The inference
time for all the concatenated emebeddings of one image is
132 ms and for only the original image is 11 ms.

3. EXPERIMENTS

3.1. Without Post Processing

Oxford and Paris datasets The upper part of Table 1 presents
our results on the Oxford and Paris data. Our model sur-

Table 1. mAP scores of various methods without post-
processing on Oxford, Paris and their revisited datasets.
MABNet-R50 represent MABNet with ResNet-50 backbone.

Model Ox5k  Ox105k Po6k P106k
R-MAC [1] 66.9 61.6 83.0 75.7
siaMAC [2] 80.0 75.1 82.9 75.3
DIR [3] 83.1 78.6 87.1 79.7
DELF [4] 83.8 82.6 85.0 81.7
Deep Conv [5] 83.8 80.6 88.3 83.1
MABNet 91.5 88.7 94.2 90.4
ROx(M) ROx(H) RPar(M) RPar(H)
DINO [13] 51.5 24.3 75.3 51.6
IRT(R) [14] 55.1 28.3 72.7 49.6
Listwise [11] 67.5 42.8 80.1 60.5
SOLAR [12] 69.9 479 81.6 64.5
MABNet 85.0 61.2 84.6 72.9
MABNet-R50 80.3 59.2 82.0 67.4

passes the reported SOTA performances by a significant mar-
gin (6.1% and 7.3% better on the Ox105k and P106k datasets,
respectively). The mAP score of our model is highest in Ox5k
and P6k too. Revisited datasets MABNet outperforms other
models by a margin of 15.1% on ROx(M), 13.3% on ROx(H),
3% on RPar(M) and 8.4% on RPar(H) (see Table 1).

3.2. With Post-processing

Oxford and Paris datasets Cyan colored rows in Table 2
shows that the post-processing techniques improve the per-
formance of MABNet. Offline diffusion provides the best
improvement (3.9—7.6%). MABNet is superior to other
methods when applied the same post-processing methods.
Revisited datasets All the methods mentioned in the lower
half of Table 2 either uses the post-processing after the in-
ference or they include post-processing technique as part of
their model. Hence, we place them in the post-processing cat-
egory. As seen from Table 2, MABNet with post-processing
outperforms other methods in most of the cases.

3.3. Ablation Studies

We conducted a variety of ablation studies for MABNet on
Ox5K dataset w/o post-processing (unless otherwise stated).

(i) Weight Transfer We considered training without weight
transfer from the assistant to the master. The score dropped
from 91.5% to 81.9%, which indicates its importance. We
also investigated the effect of changing the direction of weight
transfer, i.e., the assistant gets updated using weight transfer.
This resulted in the drop of score to 80.5%. We hypothe-
size that the weight transfer of master instead of assistant is
more effective since addition of global-only spatial informa-
tion from assistant to the local-global contextual embedding



Table 2. mAP scores of various methods with different post-
processing techniques on Oxford, Paris and their revisited

Table 3. mAP scores of MABNet(C) without post-processing
on Oxford, Paris and their revisited datasets.

datasets. Legend: PP - PostProcessing, Q - AQE, AQ - AML Model Ox5k Ox105k P6k  P106k
J(; ;;‘%E’I?if?u'sg?&‘*%%& ?R -HeW + AQE + HeR, O - FrpNer 915 887 942 904
: : MABNet(C) 925 896 953 921
MABNet 91.5 887 942 904 MABNet(C) + Q 93.6 924 959  94.1
siaMAC + Q [2] 854 823 870 1796 MABNet + WQR 957 929 965  95.6
DIR + Q [3] 89.0 878 938 905 MABNet(C) + WQR  97.1 938 98.1 964
MABNet + Q 923 896 952  91.1 MABNet + O 972 963 98.1  96.8
R-MAC + AQ [1] 773 732 865 798 MABNet(C) + O 983 978 983 975
DELF + DQ [4] 90.0 885 957 928
GaMAC+WQR [16] 920 903 943 902 ROx(M) ROx(H) RPar(M) RPar(H)
MABNet + WQR 957 929 965  95.6 MABNet 850 612 846 729
R-MAC + O [17] 962 952 978 962 MABNet(C) 858 621 857 738
MABNet + O 972 963 981 968 MABNet + Q 87.1 638 864 735
MABNet(C) + Q 88.1 628 862 747
ROx(M) ROx(H) RPar(M) RPar(H) MABNet + WQR 884 654 883 758
DELG [6] 81.2 64.0 87.2 72.8 MABNet(C) + WQR 89.7 65.8 87.6 76.9
DOLG [7] 815 61.1 910 803 MABNet + O 893 662 889 782
Swin-T-DALG [8] 787 547 882 763 MABNet(C) + O 902 675 898 794
Swin-S-DALG [8] 799 575 904  79.0
GeM (Baseline) [9] 83.0 655 902 807
GeM-Local Match [9]  85.9 712 92.0 83.7 1 shows that ViT gives significantly better performance than

CVNet-Rerank [10] 87.2 75.9 91.2 81.1

MABNet + Q 87.1 63.8 86.4 73.5
MABNet + WQR 88.4 65.4 88.3 75.8
MABNet + O 89.3 66.2 88.9 78.2
MABNet + CV 87.1 76.5 92.3 82.7

of the master enriches it into a more generalized block.

(ii) KL Divergence Loss We consider the effect of dropping
KL loss while training our model. The performance deterio-
rates from 91.3% to 83.3%, indicating that self-supervision is
a critical determinant of MABNet. We also consider revers-
ing the reference for KL loss, i.e., setting assistant embedding
as reference. The model performs poorer than MABNet (by
5.8%), indicating the importance of master as reference.

(iii) Reversing the knowledge flow We considered changing
the direction of both the weight transfer and KL divergence at
the same time. The performance of MABNet drops by 11%
asserting the importance of the chosen knowledge flow.

(iv) Assistant block We train our method with only the master
block, removing the assistant block and all its dependent con-
nections like weight transfer, KL and ArcFace loss. For fair
comparison, we consider all the crops and the original image.
The score here drops to 80.2% from 91.5% for Ox5k, 77.6%
from 85.0% for ROx(M) and 49.3% from 61.2% for ROx(H),
indicating the importance of the assistant block.

(v) ViT backbone We use ViT as the backbone due to its
advantages (discussed in section 1). We replaced ViT with
ResNet-50 and followed the same training procedure. Table

ResNet-50. Nonetheless, MABNet with ResNet-50 still per-
forms better than other methods.

(vi) Concatenated features We use original image, 2 global
and 8 local crops for inference. The mAP score of MABNet
on Ox5k is 91.5%. Passing only the original image as in-
put for inference gives 90.2% which is still superior than the
SOTA. The mAP scores were 85.7% when only 2 global crops
were passed and 85.4% with only 8 local crops. Increasing the
concatenated features with the original image, 4 global and 12
local crops gave mAP 91.7% which is not a significant boost
from 91.5%. We conclude that the use of original image, 2
global and 8 local crops gives better balance between com-
plexity and performance. Still, to decrease the inference time,
one may use only original image giving satisfactory result.
(vii) Ensemble of two blocks MABNet uses only the master
block to generate the final output. Here, we extend MAB-
Net to MABNet(C), where we predict by concatenating the
embeddings of the master and the assistant block. It is seen,
MABNet(C) performs better in all the situations (see Table
3). MABNet is two times faster than the MABNet(C) at infer-
ence time because it has half the number of parameters. The
choice of MABNet and MABNet(C) is based on the trade-off
between the inference time and the improved accuracy.

4. CONCLUSION

We presented MABNet, a new approach to employ both the
supervised and self-supervised learning paradigm. Our abla-
tion study clearly shows the importance of the buddy model,



guidance of self-supervised learning by the master, and
knowledge propagation from assistant to master. We show-
case the efficacy of MABNet on Oxford, Paris and their revis-
ited datasets with and without post-processing. The perfor-
mance can be further improved by an ensemble of two blocks
during prediction, but it doubles the inference time. The use
of supervision and self-supervision collectively, can be ex-
plored for other computer vision tasks in the future. The code
is available at https://github.com/Rohit102497/MABNet.
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