STRING-BASED MOLECULE GENERATION VIA MULTI-DECODER VAE

Kisoo Kwon Samsung Advanced Institute of Technology

Novel Molecular Generation

Material (molecular) discovery?

• Find a **novel structure** which has **desired** physical and chemical **properties**

Domain knowledge based Molecular generation (design)

- High dependency to human knowledge (experience)
- \rightarrow Bad Bias leads to a wrong structure and low diversity. + high time-consuming

Novel Molecule Generation

- Machine learning (deep learning) for molecular generation
 - Molecule representations for ML: Graphs, SMILES (string type), Images...
 - Algorithms : GANs, VAEs, flow-based, score-based, diffusion-based approaches, ...
 - Need generation models with a high percentage of vaildity, novelty, uniquess
 - **★** The ability to generate **out-of-distribution (OOD) domain's structure** is essential.

)cc3)C2=

O)cs1

)cc3)C2=

O)cs1

Ensemble Method

Ensemble learning

"Ensemble methods use **multiple learning algorithms** to obtain better predictive performance than could be obtained from any algorithms alone." – Wiki.

- Usually, average predictions or bottleneck features from multiple models
- However, there is less research on ensembles in generative models

• We propose appropriate ensemble techniques for generative models

- Multi-decoder structure with auto-regressive decoders
 - + A collaborative loss
 - + A simple way to **differentiate between decoders**

 \rightarrow It can be applied to other domains.

Multi-decoder based VAE (1/2)

Multi-decoder (MD) Variational Autoencoder

- Multiple decoders are trained simultaneously with shared single encoder
- Ensemble logits* of each decoder and generate each string with auto-regression

* In our experiments, the **ensemble on logits** showed better performance than those on **softmax(logits)**.

Multi-decoder based VAE (2/2)

- Add two approaches for MD-VAE
 - Collaborative loss (*L*_{col})
 - Cross-entropy loss of the ensembled logits
 - Apply with the previous reconstruction loss (\mathcal{L}_{ind}^*)

$$\mathcal{L}_{col} = \log \frac{1}{K} \sum_{k} p_{\theta_k}(x|y, z_k) \qquad \mathcal{L}_{ind} = \frac{1}{K} \sum_{k} \log p_{\theta_k}(x|y, z_k)$$

* Cross-entropy of the each decoder's logits

- Different latent variables for each decoder
 - Each decoder has different $z_k \rightarrow$ strengthen each decoder's specialty

$$z_k \sim \mathcal{N}(z_k | \mu_{\phi}(x, y), diag(\sigma_{\phi}(x, y)))$$

Training loss of the proposed method

$$\mathcal{L} = (1 - \alpha)\mathcal{L}_{col} + \alpha\mathcal{L}_{ind} + KLD(q_{\phi}(\cdot | x, y) || p(\cdot))$$

Experimental Result (Reconstruction)

Dataset: ZINC-250k DB (training), ZINC-310k DB (evaluation)

- Organic molecules, drug-like molecules
- Input: SMILES, Ouput: 3-properties (continuous values)
- Properties
 - molWt (molecular weight), LogP (partition coefficient), QED (quantitative estimation of drug-likeness)
- Back-bone: transfomer based conditional VAE + controlVAE*

(a) An example of SMILES in ZINC DB: COc1ccc(N2CC(C(=O)Oc3cc(C)ccc3C)CC2=O)cc1

*Huajie Shao, et al., "Controlvae: Controllable variational autoencoder. International Conference on Machine", ICML, 2020

Experimental Result (Reconstruction)

- (c) **Reconstruction loss**: x-axis=model size (mb). In case of MD, #decoder has increased (3~7)
 - *140mb: relative reduction 36.2%

(d) **Reconstruction success rate**: x-axis=model size (mb) Seen DB=ZINC250k, **Unseen DB=ZINC310k**

*Unseen case: relative improvement 4.8%

Model	model size	Recon. Loss	KL Loss	Reconstruction success rate (Unseen)
Vanilla VAE	142MB	17.276	0.000	0.783
Control VAE (Base)	142MB	6.851	15.168	0.880
3-Decoder	138MB	7.001	15.207	0.898
3-Decoder+collaborative	138MB	5.508	14.937	0.891
3-Decoder+different z	138MB	6.555	15.145	0.902
3-Decoder+collaborative +differenct z	138MB	4.482	15.068	0.909

Experimental Result (Generation)

- Generative efficiency (validity, novelty, uniqueness)
 - Target: out-ouf-distribution (OOD) conditions
 - Using out of property-range of training DB as a generative conditions of cVAE
 - 10k generative tries per property

(a) Molecular Generative Efficiency (%)*relative improvment 9.3%

Conditions satisfaction (Top1 molecule, absolute error)

Difference between ground-truth* and generative conditions

	In-domain Condition			Out-of-distribution Condition		
	molWt	logP	QED	molWt	logP	QED
Control VAE (Base)	0.1520	0.0008	0.0041	0.0800	1.3598	0.0008
MD	0.0940	0.0003	0.0040	0.1740	0.0204	0.0015
MD _{col}	0.0497	0.0013	0.0042	0.0760	0.0069	0.0002
MD _{dif}	0.0797	0.0007	0.0041	0.0470	0.0003	0.0002
MD _{dif,col}	0.0513	0.0004	0.0041	0.0620	0.0013	0.0006

*RDkit calculations

• Examples of generated molecules

• Each condition value is $\mu \pm 3\sigma$ of the properties of ZINC-250k DB

property name: condition value → *generated molecule's property* (by *RDkit*)

 Property value range of ZINC-250k DB

Property	Value		
malut	Max	500.00	
moiwt	Min	150.12	
LevD	Max	8.252	
LOGP	Min	-6.876	
	Max	0.9484	
QED	Min	0.1166	