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Motivation

The low-rank structure appears in natural images, video/audio signal enhancement,

RNA-sequencing, data denoising, social science data, etc.

Two ways to reconstruct the low-rank matrix data L

Decomposition-based methods: Lm×n = Xm×p(Yn×p)>
p is small

fast computation (no singular value decomposition (SVD))

requires the true rank p

Low rank regularization f (L) (e.g., nuclear norm ‖L‖∗)
requires SVD for a large m× n matrix (multiple times)

does not require the true rank

A combined approach proposed: computing SVD for a small m× p matrix (multiple

times); requires only an upper bound of the true rank.

Basics of Proximal Operators

Proximal Operator

Given a matrix M ∈ Rm×n, the proximal of a function f is

proxf(M) = arg min
L

f (L) + 1
2
‖L−M‖2

F

Computation of proxf(M)
Assume the objective f only depends on the singular values of the input matrix,

i.e. f (L) = f (ΣL), where L = ULΣLV>L is the singular value decomposition of L.
Let the input matrix M have the SVD M = UMΣMV>M, then

proxf(M) = UM ·ΣL ·V>M

where ΣL = arg minΣL f (ΣL) + 1
2‖ΣL −ΣM‖2

F

Preparation: Finding a Low-Rank Approximation to the Input
of the Proximal Operator

Assuming the output of the proximal operator L has rank rank(L) ≤ p, we have its

SVD

L =(UL)m×p(ΣL)p×p

(
(VL)n×p

)>
= (UL)m×p(ΣL)p×pOp×p︸ ︷︷ ︸

Xm×p

(Op×p)>
(
(VL)n×p

)>︸ ︷︷ ︸
(Yn×p)>

.

(ΣL)p×p ∈ Rp×p is computed from ΣM ∈ Rm×n.

(UL)m×p is the first p columns of (UM)m×m.

(VL)n×p is the first p columns of (VM)n×n.

Op×p is an orthonormal matrix.

Compare SVDs of XX> and MM>:

XX> = (UL)m×p(ΣL)2
p×p((UL)n×p)>

MM> = (UM)m×m(ΣM)m×n((ΣM)m×n)>((UM)m×m)>

To find L, we determine its decomposition components X and Y.

Main Idea: Computing the proximal operator exactlywith a small-sized matrix is fast.

We find a low-rank approximation to the input matrix M through the Gauss-Newton

iteration.

Gauss-Newton accelerated protocol for sequential proxf(M)

1. Gauss-Newton iteration [LWZ15, SSY21] to find

X̃ = arg minX∈Rm×p ‖XX> −MM>‖2
F:

X̃←MM>X(X>X)−1 −X
(
(X>X)−1X>MM>X(X>X)−1 − I

)
/2

2. Y = M>X̃(X̃>X̃)−1 = (VM)1:n,1:pO (by-product)

3. Compute X = proxf(X̃) = (UM)1:m,1:pΣLO (Note X̃ ∈ Rm×p) and output XY>.

Application: Robust PCA Setup

Recover a low-rank componentL and a sparse component S from a noisy datamatrix

D ∈ Rm×n:

min
L,S

‖L‖∗︸︷︷︸
low-rank

+ β‖S‖0︸ ︷︷ ︸
sparse

+ λ‖D− L− S‖1︸ ︷︷ ︸
robust noisy

,

where β and λ are two given constant parameters.

Robust PCAAlgorithm [LR19]
Algorithm 1 Sparsity regularized principal component pursuit
1: while not converged do

2: with an index set Φ, update L (can be accelerated by GN protocol) :

L = arg min
L
‖L‖∗ + λ‖PΦ(D− L)‖1

using ADMM. Here PΦ is the projection onto the index set.

3: fix L, update S (has an analytical solution) :

S = arg min
S

β‖S‖0 + λ‖D− L− S‖1

4: end while

ADMM has the proximal computation step L(k+1) = arg minL
1
θ‖L‖∗ + 1

2‖L −M‖2
F,

where M is an intermediate matrix. This is where the acceleration protocol kicks in.

The function
1
θ
‖L‖∗ only depends on the singular values of the input matrix L.

Only 2-3 Gauss-Newton iterations are sufficient for solving the dense

component.

Synthetic Data Setup

L0: Low-rank component, formed by multiplying standard Gaussian matrices of size

n× r and r × n.

S0: Sparse matrix with ρn2 outliers uniformly chosen in [−100, 100].
N: Gaussian noise with mean 0 and variance σ2.

We average results over 10 repetitions for each combination of r ∈ {1 : 40} and
ρ ∈ {0.01 : 0.01 : 0.50}, with parameters n = 100, σ = 0.1, λ = 0.1, γ = 40 (see paper),
β = 2, and p = r + 5 upper bound on the rank.

RPCA Error and Run-time Comparison

SRPCP Errors
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SRPCP-GN Errors
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IR-SRPCP Errors
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IR-SRPCP-GN Errors
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Reconstruction error measured by
‖L̂−L0‖F
‖L0‖F

and plotted on a log scale 2 log10(·).
The proposed methods (right) have similar performance as the original (left).

Ratio of SRPCP-GN
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Ratio of IR-SRPCP-GN
to IR-SRPCP Times
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SRPCP-GN has a runtime that is only 76% as long as SRPCP on average, and it

finishes before SRPCP in 84% of the tests.

IR-SRPCP-GN takes 47% of the time that IR-SRPCP takes on average, and it

finishes before IR-SRPCP 98% of the time.

Stability over Hyperparameters

With the Gauss-Newton acceleration protocol in the RPCA algorithm, the solver

shows a wider area of stability with respect to the upper bound of the rank and

hyperparameters (β and γ) (see paper).
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