

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Motivation

The low-rank structure appears in natural images, video/audio signal enhancement, RNA-sequencing, data denoising, social science data, etc.

Two ways to reconstruct the low-rank matrix data L

- Decomposition-based methods: $\mathbf{L}_{m \times n} = \mathbf{X}_{m \times p} (\mathbf{Y}_{n \times p})^{\top}$ p is small
- fast computation (no singular value decomposition (SVD)) • requires the true rank p
- Low rank regularization $f(\mathbf{L})$ (e.g., nuclear norm $\|\mathbf{L}\|_*$)
- requires SVD for a large $m \times n$ matrix (multiple times)
- does not require the true rank

A combined approach proposed: computing SVD for a small $m \times p$ matrix (multiple times); requires only an upper bound of the true rank.

Basics of Proximal Operators

Proximal Operator

Given a matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$, the proximal of a function f is

 $\mathbf{prox}_f(\mathbf{M}) = \arg\min_{\mathbf{L}} f(\mathbf{L}) + \frac{1}{2} \|\mathbf{L} - \mathbf{M}\|_{\mathrm{F}}^2$

Computation of $\mathbf{prox}_{f}(\mathbf{M})$

- Assume the objective f only depends on the singular values of the input matrix, i.e. $f(\mathbf{L}) = f(\mathbf{\Sigma}_{\mathbf{L}})$, where $\mathbf{L} = \mathbf{U}_{\mathbf{L}} \mathbf{\Sigma}_{\mathbf{L}} \mathbf{V}_{\mathbf{L}}^{\top}$ is the singular value decomposition of \mathbf{L} .
- Let the input matrix M have the SVD $\mathbf{M} = \mathbf{U}_{\mathbf{M}} \Sigma_{\mathbf{M}} \mathbf{V}_{\mathbf{M}}^{\top}$, then

$$\mathbf{prox}_f(\mathbf{M}) = \mathbf{U}_{\mathbf{M}} \cdot \mathbf{\Sigma}_{\mathbf{L}} \cdot \mathbf{V}_{\mathbf{M}}^{\top}$$

where $\Sigma_{\mathbf{L}} = \arg \min_{\Sigma_{\mathbf{L}}} f(\Sigma_{\mathbf{L}}) + \frac{1}{2} \|\Sigma_{\mathbf{L}} - \Sigma_{\mathbf{M}}\|_{\mathrm{F}}^2$

Preparation: Finding a Low-Rank Approximation to the Input of the Proximal Operator

Assuming the output of the proximal operator **L** has rank $rank(\mathbf{L}) \leq p$, we have its SVD

$$\mathbf{L} = (\mathbf{U}_{\mathbf{L}})_{m \times p} (\mathbf{\Sigma}_{\mathbf{L}})_{p \times p} ((\mathbf{V}_{\mathbf{L}})_{n \times p})^{\top}$$

= $\underbrace{(\mathbf{U}_{\mathbf{L}})_{m \times p} (\mathbf{\Sigma}_{\mathbf{L}})_{p \times p} \mathbf{O}_{p \times p}}_{\mathbf{X}_{m \times p}} \underbrace{(\mathbf{O}_{p \times p})^{\top} ((\mathbf{V}_{\mathbf{L}})_{n \times p})^{\top}}_{(\mathbf{Y}_{n \times p})^{\top}}.$

- $(\Sigma_{\mathbf{L}})_{p \times p} \in \mathbb{R}^{p \times p}$ is computed from $\Sigma_{\mathbf{M}} \in \mathbb{R}^{m \times n}$.
- $(\mathbf{U}_{\mathbf{L}})_{m \times p}$ is the first p columns of $(\mathbf{U}_{\mathbf{M}})_{m \times m}$.
- $(\mathbf{V}_{\mathbf{L}})_{n \times p}$ is the first p columns of $(\mathbf{V}_{\mathbf{M}})_{n \times n}$.
- $\mathbf{O}_{p \times p}$ is an orthonormal matrix.
- Compare SVDs of $\mathbf{X}\mathbf{X}^{\top}$ and $\mathbf{M}\mathbf{M}^{\top}$:

 $\mathbf{X}\mathbf{X}^{\top} = (\mathbf{U}_{\mathbf{L}})_{m \times p} (\mathbf{\Sigma}_{\mathbf{L}})_{p \times p}^{2} ((\mathbf{U}_{\mathbf{L}})_{n \times p})^{\top}$

 $\mathbf{M}\mathbf{M}^{\top} = (\mathbf{U}_{\mathbf{M}})_{m \times m} (\mathbf{\Sigma}_{\mathbf{M}})_{m \times n} ((\mathbf{\Sigma}_{\mathbf{M}})_{m \times n})^{\top} ((\mathbf{U}_{\mathbf{M}})_{m \times m})^{\top}$

• To find \mathbf{L} , we determine its decomposition components \mathbf{X} and \mathbf{Y} .

Main Idea: Computing the proximal operator exactly with a small-sized matrix is fast. We find a low-rank approximation to the input matrix \mathbf{M} through the Gauss-Newton iteration.

Sparsity and Low-Rank Models, ICASSP 2023

Fast Robust Principle Component Analysis using **Gauss-Newton Iterations**

William Chettleburgh¹ Zhishen Huang^{2,1} Ming Yan^{3,1} ²Amazon ³The Chinese University of Hong Kong, Shenzhen

¹Michigan State University

Gauss-Newton accelerated protocol for sequential $prox_f(M)$

Gauss-Newton iteration [LWZ15, SSY21] to find $\mathbf{X} = \arg\min_{\mathbf{X} \in \mathbb{R}^{m \times p}} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{M}\mathbf{M}^{\top}\|_{\mathrm{F}}^{2}$ $\widetilde{\mathbf{X}} \leftarrow \mathbf{M}\mathbf{M}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} - \mathbf{X}((\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{M}\mathbf{M}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} - \mathbf{I})/2$ 2. $\mathbf{Y} = \mathbf{M}^{\top} \widetilde{\mathbf{X}} (\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}})^{-1} = (\mathbf{V}_{\mathbf{M}})_{1:n,1:p} \mathbf{O}$ (by-product)

3. Compute $\mathbf{X} = \operatorname{prox}_{f}(\widetilde{\mathbf{X}}) = (\mathbf{U}_{\mathbf{M}})_{1:m,1:p} \Sigma_{\mathbf{L}} \mathbf{O}$ (Note $\widetilde{\mathbf{x}} \in \mathbb{R}^{m \times p}$) and output $\mathbf{X}\mathbf{Y}^{\top}$.

Application: Robust PCA Setup

Recover a low-rank component \mathbf{L} and a sparse component \mathbf{S} from a noisy data matrix $\mathbf{D} \in \mathbb{R}^{m \times n}$:

 $\min_{\mathbf{L},\mathbf{S}}$ low-rank sparse

where β and λ are two given constant parameters.

Robust PCA Algorithm [LR19]

Algorithm 1 Sparsity regularized principal componer			
1: while not converged do			
2: with an index set Φ , update ${f L}$ (can be accele			
$\mathbf{L} = \arg\min_{\mathbf{L}} \ \mathbf{L}\ _* + \lambda \ \mathcal{P}_{\mathbf{L}}\ _*$			
(a) = (a) + (a)			

using ADMM. Here \mathcal{P}_{Φ} is the projection onto the index set. fix \mathbf{L} , update \mathbf{S} (has an analytical solution) :

 $\mathbf{S} = \arg\min_{\mathbf{S}} \beta \|\mathbf{S}\|_0 + \lambda \|\mathbf{D} - \mathbf{L} - \mathbf{S}\|_1$

4: end while

3:

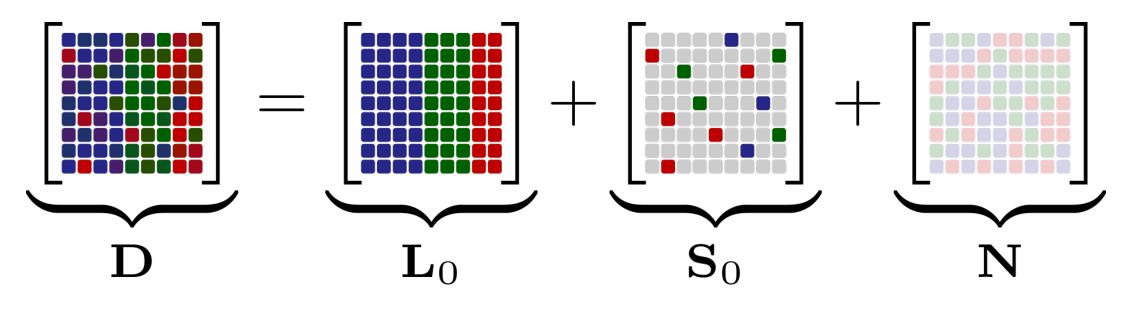
ADMM has the proximal computation step $\mathbf{L}^{(k+1)} = \arg\min_{\mathbf{L}} \frac{1}{\theta} \|\mathbf{L}\|_* + \frac{1}{2} \|\mathbf{L} - \mathbf{M}\|_F^2$, where \mathbf{M} is an intermediate matrix. This is where the acceleration protocol kicks in.

• The function $\frac{1}{A} \|\mathbf{L}\|_*$ only depends on the singular values of the input matrix **L**.

 Only 2-3 Gauss-Newton iterations are sufficient for solving the dense component.

Synthetic Data Setup

- L_0 : Low-rank component, formed by multiplying standard Gaussian matrices of size $n \times r$ and $r \times n$.
- \mathbf{S}_0 : Sparse matrix with ρn^2 outliers uniformly chosen in [-100, 100].
- N: Gaussian noise with mean 0 and variance σ^2 .

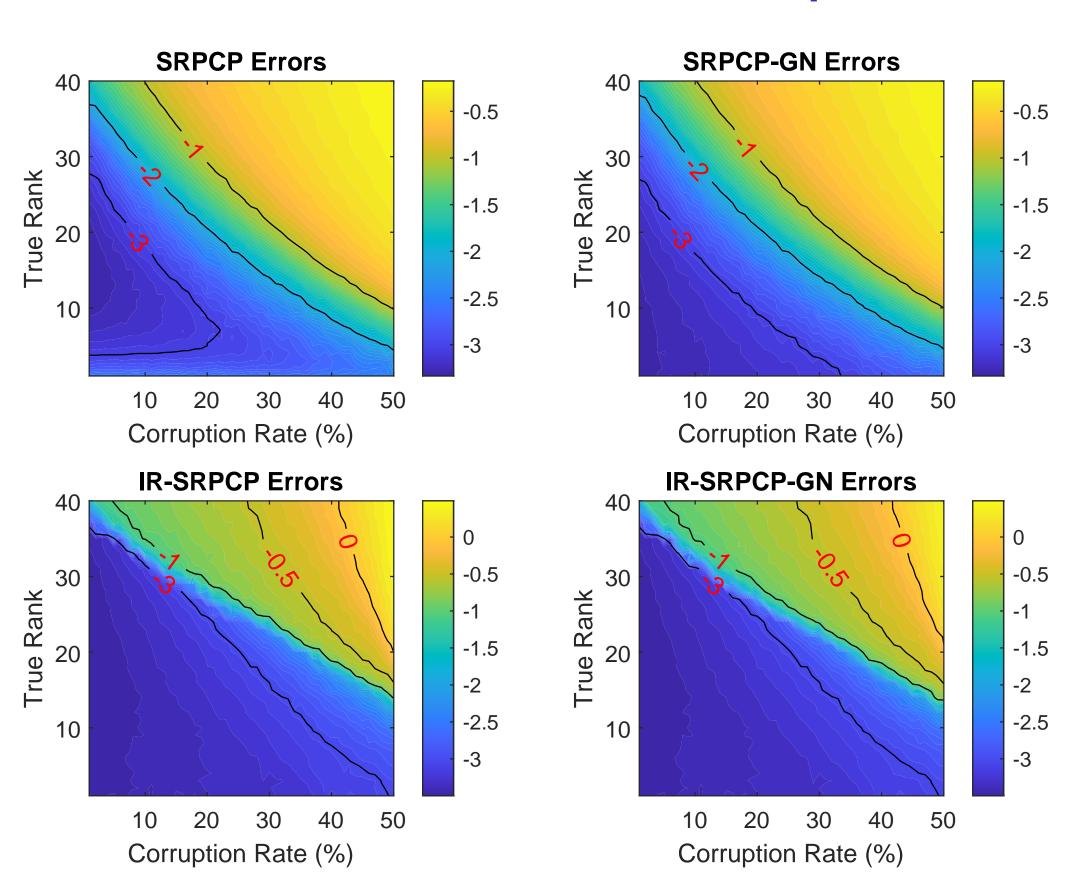


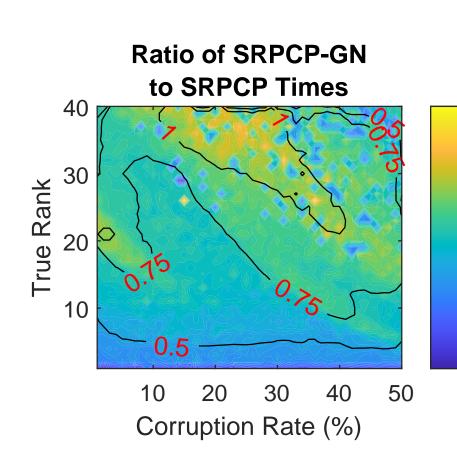
We average results over 10 repetitions for each combination of $r \in \{1 : 40\}$ and $\rho \in \{0.01: 0.01: 0.50\}$, with parameters $n = 100, \sigma = 0.1, \lambda = 0.1, \gamma = 40$ (see paper), $\beta = 2$, and p = r + 5 upper bound on the rank.

robust noisy

ent pursuit

erated by GN protocol) : $\mathbf{P}_{\Phi}(\mathbf{D}-\mathbf{L})\|_{1}$





- finishes before SRPCP in 84% of the tests.
- finishes before IR-SRPCP 98% of the time.

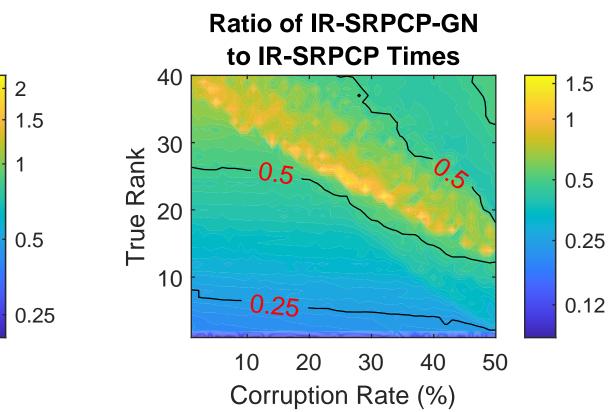
Stability over Hyperparameters

With the Gauss-Newton acceleration protocol in the RPCA algorithm, the solver shows a wider area of stability with respect to the upper bound of the rank and hyperparameters (β and γ) (see paper).

	F
[LR19]	Jing Liu and Bhaskar D. Rao. Robust pca via ℓ_0 - ℓ_1 regularization. IEEE Transactions on Signal Processing, 67(2):535–5
[LWZ15]	Xin Liu, Zaiwen Wen, and Yin Zhang. An efficient gauss–newton algorithm for symmetr SIAM Journal on Optimization, 25(3):1571–1608, 2
[SSY21]	Ningyu Sha, Lei Shi, and Ming Yan. Fast algorithms for robust principal component an Inverse Problems and Imaging, 15(1):109–128, 202

RPCA Error and Run-time Comparison

• Reconstruction error measured by $\frac{\|\widehat{\mathbf{L}} - \mathbf{L}_0\|_F}{\|\mathbf{L}_0\|_F}$ and plotted on a log scale $2\log_{10}(\cdot)$. • The proposed methods (right) have similar performance as the original (left).



• SRPCP-GN has a runtime that is only 76% as long as SRPCP on average, and it

IR-SRPCP-GN takes 47% of the time that IR-SRPCP takes on average, and it

References

-549, 2019.

tric low-rank product matrix approximations. 2015.

analysis with an upper bound on the rank.