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Motivation

The low-rank structure appears in natural images, video/audio signal enhancement,
RNA-sequencing, data denoising, social science data, etc.

Two ways to reconstruct the low-rank matrix data LL

= Decomposition-based methods: Ly,xn = Xonsxp(Yoxp) "
= pissmall
= fast computation (no singular value decomposition (SVD))
= requires the true rank p

= Low rank regularization f(L) (e.g., nuclear norm ||L||,)

» requires SVD for a large m x n matrix (multiple times)
= does not require the true rank

A combined approach proposed: computing SVD for a small m x p matrix (multiple
times); requires only an upper bound of the true rank.

Basics of Proximal Operators

Proximal Operator
Given a matrix M € R"™*" the proximal of a function f is

1
prox, (M) = argmin /(L) + | L — M

Computation of prox (M)

= Assume the objective f only depends on the singular values of the input matrix,
i.e. f(L) = f(31), where L = U3 V] is the singular value decomposition of L.

= | et the input matrix M have the SVD M = Uy XMV, then

pI‘OXf(M) = Unp - 21, VK/I

where 3, = arg miny, f(2r) + 5|2 — Sl

Preparation: Finding a Low-Rank Approximation to the Input
of the Proximal Operator

Assuming the output of the proximal operator L has rank rank(L) < p, we have its
SVD

L =(UL)mp(ZL)pep (VL)) |

— &UL)mXp<ZL)poOpr£Opxp)T ((VL>n><p)
Xi;;p (Yosp)T

" (31)pxp € RP*Pis computed from Xy € R™*™.
* (UL)mxyp is the first p columns of (Unt)mxm.

* (VL)nxp 1S the first p columns of (Vim)nxn.

= O,«, IS an orthonormal matrix.

= Compare SVDs of XX " and MM ':

XX = (UL)mup(L)p (UL )nnp) |
MM " = (Ut Ent) (Bt ) (Undmcm) "
= To find L, we determine its decomposition components X and Y.

Main ldea: Computing the proximal operator exactly with a small-sized matrix is fast.
We find a low-rank approximation to the input matrix M through the Gauss-Newton
iteration.
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Gauss-Newton accelerated protocol for sequential prox (M)
1. Gauss-Newton iteration [LWZ15, SSY21] to find
X = arg minyegmo || XX — MM ' [|%:
X + MM'X(X™X)™" - X((XTX)"'X MM X(XX)™" —T)/2

2. Y =M"X(X"X)! = (Va)1:0.15,0 (by-product)
3. Compute X = prox ¢(X) = (Unt) 1,120 Note X e ) and output XY ',

Application: Robust PCA Setup

Recover alow-rank component L and a sparse component S from a noisy data matrix
D € R™*"™:

min - [[Lil,  + J[Slly + D — L — S|y,

LS “~~~ :
low-rank sparse  robust noisy

where 5 and A are two given constant parameters.

Robust PCA Algorithm [LR19]

Algorithm 1 Sparsity regularized principal component pursuit
1: while not converged do

2. with an index set @, update L (can be accelerated by GN protocol) :

L = arg mﬁn |L||« + Al|Po(D — L)||4

using ADMM. Here Py is the projection onto the index set.
3. fix L, update S (has an analytical solution) :

S = argmin 5[|S[lo + A[|D — L — S|},

4. end while

ADMM has the proximal computation step L") = argminy, 5||L]|. + 3L — M]3,
where M is an intermediate matrix. This is where the acceleration protocol kicks in.

.1 . . .
* The function EHLH* only depends on the singular values of the input matrix L.

= Only 2-3 Gauss-Newton iterations are sufficient for solving the dense
component.

Synthetic Data Setup

Ly: Low-rank component, formed by multiplying standard Gaussian matrices of size

n X randr X n.

Sy: Sparse matrix with pn? outliers uniformly chosen in [—100, 100].
N: Gaussian noise with mean O and variance 2.
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We average results over 10 repetitions for each combination of » € {1 : 40} and
p € {0.01:0.01:0.50}, with parameters n = 100, 0 = 0.1, A = 0.1, v = 40 (see paper),
B =2,and p =17+ 5 upper bound on the rank.
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RPCA Error and Run-time Comparison
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= Reconstruction error measured by |

TTolls and plotted on a log scale 21ogy,(+).

= The proposed methods (right) have similar performance as the original (left).
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= SRPCP-GN has a runtime that is only 76% as long as SRPCP on average, and it
finishes before SRPCP in 84% of the tests.

= [R-SRPCP-GN takes 4 /7% of the time that IR-SRPCP takes on average, and it
finishes before IR-SRPCP 928% of the time.

Stability over Hyperparameters

With the Gauss-Newton acceleration protocol in the RPCA algorithm, the solver
shows a wider area of stability with respect to the upper bound of the rank and
hyperparameters (5 and «) (see paper).
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