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Motivation sl

* It is difficult to obtain abundant EEG data because collecting EEG training data is
time-consuming and labor-intensive;

» Because of the particularity of EEG data structure, the existing federated learning
method can not perform well in EEG decoding;

« We aim to exploit a federated EEG decoding framework by utilize the structure
consistency among the local data to solve client drift in federated EEG learning.
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Structure estimation

« Multiple virtual class centers of each client are extracted by averaging the class specific
EEG deep features.;

« Minimize the distance between the EEG deep features and their corresponding virtual
class center to promote discriminative feature learning;

« Make different virtual class center points away from each other.

Center Loss:
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Inter-subject structure matching s |

« The central server collects the virtual class centers from each client and averages the
centers from all subjects to compute the global virtual class centers representing the
general inter-subject structure information;

« The central server sends the global virtual class centers to each client to rectify the
local training of each client.

Structure matching loss:
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The objective function of local training for each client:
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Experiments l

 Dataset

BCI Competition IV lla;

BCI Competition 111 Illa:

We used the EEG signals during the time interval [2.5s,6s] of each trial to
evaluate the classification performance. Besides, EEG signals were band-pass
filtered using the 5-order Butterworth filter in the frequency range of 4-38 Hz.
Finally, we normalized all the EEG data to [-1, 1].

Each subject acts as a client, for each client, the dataset was randomly divided
such that 50% of which was for used training, 20% for validation and 30% for

testing.
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Experiments AT

« Experimental Setting

— The upperbound: DeepAll
— State-of-the-art Federated learning methods:FedAvg!, FedProx?, MOON?3,

FedFIRM* , FedBN®
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Table 1: Classification accuracy of the proposed FedEEG and the state-of-the-art methods on two MI-based EEG datasets.
Dataset 1 Dataser 2
Methods =457 402 403 A04 AO5 A06 A07 A0S  A09 Avg | BOI _B02 BO3  Awg
DeepAll 79.77 52.02 8150 50.87 46.24 41.62 67.74 7803 7630 63.79 | 88.99 7222 73.61 78.27
FedAvg [9] 79.19 3642 80.08 3499 31.21 38.15 60.12 7546 5705 5474 | 7523 3333 59.72 56.09
FedProx [10] | 79.77 3642 80.92 3699 27.75 3468 6647 7812 6647 5640 | 7431 3056 6597 56.94
MOON [15] | 79.77 3699 8439 3410 2948 3410 6647 7341 64.16 5588 | 7431 3750 63.89 58.57
FedIRM [13] | 81.50 39.31 8397 3583 30.06 30.63 6590 78.61 6532 56.79 | 7431 3472 66.67 58.57
FedBN [16] | 7946 37.84 82.08 34.68 30.06 43.20 4451 7263 7634 5564 | 79.82 40.28 59.72 59.94
FedEEG 82.66 3642 8439 41.05 4642 3857 7341 7572 7341 6134 | 86.24 55.56 5139 64.40
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Summary l

* Anovel federated learning framework for EEG decoding.

— Our key idea is that consistency in inter-subject structure is helpful to
correct the local training of individual subject;

— we devise a center loss to extract the virtual class centers and promote the
discriminative feature learning in local client and introduce an inter-client
structure matching scheme to rectify client drift.

Thank you for listening
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