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ABSTRACT

Data selection is essential for any data-based optimization
technique, such as Reinforcement Learning. State-of-the-art
sampling strategies for the experience replay buffer improve
the performance of the Reinforcement Learning agent. How-
ever, they do not incorporate uncertainty in the Q-Value esti-
mation. Consequently, they cannot adapt the sampling strate-
gies, including exploration and exploitation of transitions, to
the complexity of the task. To address this, this paper pro-
poses a new sampling strategy that leverages the exploration-
exploitation trade-off. This is enabled by the uncertainty esti-
mation of the Q-Value function, which guides the sampling to
explore more significant transitions and, thus, learn a more ef-
ficient policy. Experiments on classical control environments
demonstrate stable results across various environments. They
show that the proposed method outperforms state-of-the-art
sampling strategies for dense rewards w.r.t. convergence and
peak performance by 26% on average.

Index Terms— uncertainty estimation, experience replay,
reinforcement learning

1. INTRODUCTION

In Deep Reinforcement Learning (DRL) applications, the
buffer, where experiences are saved, represents a key com-
ponent. In fact, learning from stored experiences leverages
supervised learning techniques, in which Deep Learning
excels [1]. Seminal work has shown how buffer sampling
techniques improve the performance of DRL models over
distributions observed during training [2]. Consequently,
how to sample from the buffer plays an important role in the
learning process. In this context, a major component of the
buffer sampling strategy regards the uncertainty of the agent
in choosing the optimal action. This influences the trade-
off between exploration-exploitation in the buffer sampling
strategy.
In the literature, the concept of uncertainty has been applied to
tasks performed by a Machine Learning (ML) model over un-
seen data distributions. Those are called Out-of-Distribution
(OOD) data, i.e., samples for which the model has high un-
certainty. Thus, in the state of the art, the assessment of
that uncertainty is typically used for OOD detection. For in-
stance, [3] proposes an uncertainty-based OOD-classification
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framework called UBOOD, which uses the epistemic uncer-
tainty of the agent’s value function to classify OOD samples.
In particular, UBOOD compares two uncertainty estimation
methods: dropout- and bootstrap-based. The highest perfor-
mance is achieved using bootstrap-based estimators, which
leverage the bootstrap neural network (BootDQN) [4].
Inspired by [3, 4], this paper employs a bootstrap mechanism
with multiple heads for determining the uncertainty in the
Q-Value estimation. This is exploited by the proposed novel
algorithm: a Monte Carlo Exploration- Exploitation Trade-
Off (MEET) for buffer sampling. Thanks to the Q-value un-
certainty estimation, MEET enables an optimized selection of
the transitions for training Off-Policy Reinforcement Learn-
ing (RL) algorithms and maximizes their return. We evaluate
MEET on continuous control problems provided by the Mu-
JoCo 1 physics simulation engine. Results show that MEET
performs consistently in terms of convergence speed and im-
proves the performance by 26% in challenging, continuous
control environments.
The remainder of this paper is structured as follows: in Sec-
tion 2, we present the background related to continuous RL,
buffer sampling, and uncertainty estimation. Furthermore,
we motivate the necessity of the proposed approach. In Sec-
tion 3, we introduce the proposed buffer sampling strategy,
while Section 4 describes the performed experiments on pub-
lic datasets and the obtained results. Finally, Section 5 con-
cludes the paper.

2. BACKGROUND AND RELATED WORK

In this section, we present concepts related to the approach
introduced in this paper. To this end, we first present char-
acteristics of continuous RL, and then we review the role of
uncertainty in RL.

2.1. Continuous Reinforcement Learning

Traditional RL methods often assume a finite action space. In
real-world applications, however, RL methods do face a con-
tinuous action space. Different methods have been developed
to extend existing methods to continuous action spaces. The
Deterministic Policy Gradient (DPG) method is one promi-
nent example [5]. The parameters are changed in the direction
of the policy gradient using the same method as for stochastic

1github.com/deepmind/mujoco
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policies. In this method, exploration is achieved by learn-
ing from samples uncorrelated to the current policy. This
work was extended in Deep Deterministic Policy Gradient
[6], by combining Deep Q-Learning and DPG, at the expense
of losing the convergence guarantees of DPG. As an alter-
native to the policy gradient method, a continuous variant of
the Q-Learning algorithm (Normalized Advantage Functions)
enables the use of Q-Learning in continuous action spaces.
In this method, the advantage function is parameterized as a
quadratic function of nonlinear features of the state [7]. In this
way, the action that maximizes the Q-Value function can be
determined analytically during the Q-Learning update. Soft
Actor-Critic methods [8] combine Off-Policy training with a
stochastic actor, which also maximizes the entropy. As a re-
sult, training stability increases along with efficiency and per-
formance.
In desirable scenarios, optimal control is reached by having a
model of the environment. Nevertheless, in many real-world
applications, a model of the environment cannot be accurately
estimated. Therefore, in those cases, model-free DRL is of-
ten used. Model-free On-Policy learning is known to be very
sample inefficient, as data is not reused [9]. Sampling tra-
jectories from the environment can be costly and slow. To
overcome this, the RL algorithm could rely on additional tra-
jectories, generated by other policies, which can be used in
the learning phase. As a matter of fact, Off-Policy methods
can deal with trajectories sampled from different policies, im-
proving the sample efficiency and exploration. One of the key
elements for the success of DQN [10] was the usage of a re-
play buffer or experience replay [11], where transition tuples
(state, action, next-state, and reward) are stored. This buffer
then serves as a training dataset from which supervised learn-
ing techniques can be applied. A naive approach would sam-
ple data evenly. However, there might be better strategies to
sample from the buffer. For example, when transition tuples
are stored to learn a Q-Value function using Q-Learning, bi-
ased sampling towards high Temporal Difference (TD) error
tuples can speed up the learning time [12]. The same idea has
been applied to trajectories as well [13]. When rewards are
sparse or delayed, storing trajectories with high returns and
sampling them more often also speeds up learning [14]. A dif-
ferent approach compares states along new trajectories with
the states in the buffer to filter out those that are novel [15].
Even RL has been used to learn an auxiliary policy that sam-
ples from the replay buffer the most useful experiences [16].
Uncertainty estimation has been used already in off-line RL
[17], trajectory exploration [18] safe RL [19], and for sam-
pling strategies in discrete [2] as well as continuous action
spaces [20]. However, to the best of our knowledge, the un-
certainty of the Q-Value estimation has not yet been used to
leverage exploration and exploitation for buffer sampling. In
that way, the proposed method samples more useful transi-
tions in continuous action space problems, without any fur-
ther assumptions on the RL model.

2.2. Uncertainty-Based Reinforcement Learning

Uncertainty-based RL aims to provide a policy with a corre-
sponding policy estimate. A When training data comes from
a different distribution, Deep Neural Network (DNN) trained
with supervised learning techniques may underperform in
tests [21]. Methods for quantifying uncertainty in predictions
have recently been focused on image and text classification

tasks [22]. In RL, uncertainty-based methods have been used
for OOD detection. In particular, these methods focus on
the DQN. The goal is to estimate how certain the agent is to
choose an action as optimal. A DQN update is determined by
the current state st, action at, reward rt, and next state st+1 in
the form of θt+1 = θt+η(yQt −Q(st, at; θt))∇θQ(st, at; θ),
where θ are the network parameters, yQt the target value at
episode step t, and η, the learning rate. To estimate the uncer-
tainty of the Q-Value function approximation, three methods
are compared in [3]: Monte-Carlo Concrete Dropout [23],
and Bootstrap methods leveraging BootDQN [4] with and
without a random prior Network [24]. Monte Carlo Con-
crete Dropout employs dropout layers, which learn individual
dropout rates per layer. This avoids hyperparameter search for
optimal rates and couples with changing data during training,
which happens in an RL setting.
Bootstrap-based methods outperform Monte Carlo Concrete
Dropout by leveraging the statistical idea of bootstrapping,
i.e., approximating a population by a sample distribution us-
ing a model ensemble. The bootstrapped DQN [4] approxi-
mates a “distribution” of Q-Values, not to be confused with
distributional RL. It trains L estimates of the Q-Value func-
tion Q̂l(s, a, θ) against its target network Q̂l(s, a, θ

−). Two
architectures are possible: an ensemble of L DNNs estimat-
ing Q̂l-value functions or one DNN with L heads. The multi-
head strategy is more efficient and utilizes the same memory
buffer over L estimations without requiring parallelization.
The multi-head bootstrapped DQN modifies DQN by adding
L heads or L Q-Value functions. For each episode step t, a
value function Q̂l is selected to act by choosing l ∈ {1, ..., L}
from a uniform and random distribution. For each step of the
episode, the action a maximizing Q̂l(st, a) is executed. Af-
terward, a masking probability distribution M generates mt,
a mask to identify whether the experience in t should be used
for training. The current transition tuple and the mask ml

t are
stored in the replay buffer, which is common to all L heads.
The gradients g of the value function Q̂l in a time step t are
glt = ml

t(y
Q
t − Q̂l(st, at; θ))∇θQ̂l(st, at; θ). DQN refers to

an only-critic algorithm, referring to [25]. Thus, we can ex-
tend the idea of bootstrapped DQN to the Actor-Critic method
without loss of generality.

3. CONSTRUCTING A BUFFER SAMPLING
STRATEGY BASED ON UNCERTAINTY

In this section, we introduce MEET, an algorithm that lever-
ages both exploration and exploitation for an improved buffer
sampling strategy. To this end, we first review how the pro-
posed method relates to Upper Confidence Bound (UCB) al-
gorithms. Afterward, we explain in detail the implementation
of MEET.

3.1. A Sampling Strategy for Exploration-Exploitation
Trade-off

Many techniques target the exploration-exploitation dilemma
in RL. Although those techniques have been applied to re-
ward functions, as well as to states and actions selection,
they have not yet been studied for transition sampling in
buffers. Accordingly, we imagine the transition sampling



as a decision-making problem, similar to the UCB algo-
rithm in the Multi-Armed Bandit problem. Here in fact the
decision-making happens, under uncertainty, by selecting one
of k-armed bandits at each time step. A decision-maker or
agent is present in the Multi-Armed Bandit Problem to choose
between k-different actions and receives a reward based on
the selected action. In this paper, we consider UCB1, which
trades-off exploitation and exploration, and is formalized as:

UCB1(i) = µi +

√
2 ln (N)

Ni
, (1)

where µi represents the current reward average of arm i at
the current round; N the number of trials passed; and Ni,
the number of pulls given to arm i in the play through his-
tory. Similarly, this algorithm has been applied in the lit-
erature to tree-based search algorithms, taking the name of
Upper Confidence bound applied to Trees (UCT), introduced
in [26]. Accordingly, random sampling is coupled to a tree-
based search algorithm for a more efficient search in a de-
fined space using an upper confidence bound algorithm. This
leads to the selection of the most promising node of the tree,
from which a sequence of actions is unrolled. The confidence
bound for a parent node u and child node ui of a tree search
is given by

UCT(ui, u) =
Q(ui)

N(ui)
+ c

lnN(u)

N(ui)
, (2)

where Q(ui) corresponds to the total simulation reward for
the node ui, and N(·) identifies the number of visits to a
node. Although several versions of UCB have been pro-
posed, as in [27], the algorithm’s core takes advantage of the
exploration-exploitation trade-off to find optimistic solutions
for the choice of next moves in a task.
Upon methods selected from exploration-exploitation strate-
gies and Monte Carlo sampling, we introduce a novel strategy
for the same problem on Replay Buffering transitions sam-
pling, to be specific a Monte Carlo Exploration-Exploitation
Trade-off (MEET) for an improved buffer sampling strategy.
Instead of sampling on a state space, MEET samples tran-
sitions in the replay buffer with an exploration-exploitation
strategy, which adapts well to the confidence of the network
in solving the task. To express the mean and variance re-
lated to the exploration-exploitation strategy, we adopt the
multi-head bootstrap network proposed in [4] for estimating
uncertainty in the Q-Value estimation (i.e., Q̂). In our case,
the multi-head uncertainty corresponds to the variance in
the prediction of the Q-Value, as a result of the training of
multiple Q-Heads. The process is described in Section 2.2.
To trade-off exploration and exploitation of transitions, we
elaborate a priority score p for sampling a transition, i.e.,

p = σ2(Q̂)

(
µ(Q̂) +

1− µ(Q̂)

N(v)

)
, (3)

where the value of p is computed for each transition stored in
the buffer.
The number of visits for a transition v is expressed by N(v).
We can rewrite the same formula as:

p =

(
1− 1

N(v)

)
µ(Q̂)σ2(Q̂) +

1

N(v)
σ2(Q̂), (4)

where the exploitation corresponds to the first term, while the
exploration is expressed with the second term . We notice that
similarly to UCB1 and UCT bounds, both the exploitation and
exploration parts consider the number of visits N(v).
Intuitively, if the transition has not been sampled sufficiently,
the variance term will encourage exploration. The variance
would be higher as the Q-Value estimation of the multiple
heads disagree on the unseen sample.
The more visits to the transition, the more relevant becomes
the exploitation term. In this case, the multiplication of the
transition’s Q-Value mean and its variance gives a higher sam-
pling priority score. In fact, while the Q-Value mean identifies
the value of the action in that state, the variance multiplication
assesses the uncertainty on the Q-Value for the given scene.
Transitions with higher uncertainty and expected Q-Value are
favored by the exploitation term, thus encouraging visits on
promising scenes while multiple heads have not reached a
consensus on the Q-Value estimate.

3.2. MEET

Algorithm 1 shows the complete pseudocode on a critic net-
work. During the training of the critic network, at each step
of the episode, we store a transition with an associated sam-
pling score equal to the maximum among the already stored
ones, according to Equation 3. In this step, we ensure that
new injected transitions can be explored in the sampling pro-
cess. Afterward, as proposed in [4], we randomly select some
critics’ heads so that only a subset of them, with probability
mp, are trained during each epoch. These are called active
heads and are represented as Q̃. Transitions are sampled dur-
ing the replay period following the normalized priority score
shown in Equation 3.
The mean µ( ˆ̃Q) and variance σ2( ˆ̃Q) of the active heads are
computed and normalized for stability reasons. These are
needed to calculate the exploration-exploitation term. To use
a ‘sum-tree’ implementation, the mean is constrained to be a
positive number, thus shifted by the smallest mean observed
so far. The computational complexity of MEET using the
’sum-tree’ is O(logN), where N identifies the number of
samples in the buffer.
After the computation of the critic loss, we update the ac-
tive critic heads with the gradient. To reduce the more likely
sampled transitions bias, the gradient is normalized with the
factor 1/N(v). This factor represents the Monte-Carlo esti-
mation of the transitions bias.
In practice, the MEET algorithm can be applied to any DRL
method using critic networks and can be extended to discrete
action space problems without loss of generality.

4. EXPERIMENTS

In this section, we first review the implementation settings.
Afterwards, we benchmark the proposed sampling strategy
against state-of-the art sampling strategies on MuJoCo, a con-
tinuous control benchmark suite.

4.1. Implementation Settings

In the implementation, we used PyTorch v1.8.0.™- GPU
v2.4.0 with CUDA® Toolkit v11.1.0. As a processing unit,
we used the Nvidia® Tesla® P40 GPU, Intel® Core i7-8700K



Algorithm 1: MEET Buffer Sampling
Steps T . Number of critic heads L. Initialize Replay

Memory H = ∅,△ = 0, p0 = 1, mp

Observe s0 and choose a0 ∼ πθ(s0)
for t=1 to T do

Observe st, rt
Set the number visits: N(vt) = 0
Store transition vt = (st−1, at−1, rt, st, N(vt))
in H with maximal priority pt = max

i<t
pi

Set Q-Head mask mt ∼ B(1,mp)

Number of heads M =

L∑
l=1

mt

Select active heads Q̃ based on mt
if t ≡ 0Mod K then

for j = 1 to k do
Sample transition j ∼ P (j) = pj/

∑
i

pi

Compute Q-Heads mean µ( ˆ̃Q)

Compute Q-Heads variance σ2( ˆ̃Q)
Update N(vj) = N(vj) + 1
Update priority score:

pj = σ2( ˆ̃Q)

(
µ( ˆ̃Q) +

1− µ( ˆ̃Q)

N(vj)

)
for m in M do

ŷ = r + γ · ˆ̃Qm,target(sj+1, aj+1)
Compute Critic Loss: Jm,,j

end
end

J =
1

M

M∑
m=1

1

k

k∑
j=1

Jm,j

Accumulate weight-change

△← △+
1

N(vj)
· ▽θJ

Update weights θ ← θ + η · △
Choose action at ∼ πθ(st)

end

CPU, and DIMM 16GB DDR4-3000 module of RAM. The
algorithms are evaluated over nine publicly available contin-
uous control environments. The results are averaged over five
experiments per environment and the code is published on
Github 2.
MEET outperforms state-of-the-art DRL buffer sampling
strategies for dense rewards. Figures 1 illustrate the average
evaluation reward attained by the soft-actor critic on different
MuJoCo tasks. The MEET sampling consistently surpasses
the uniform and prioritized buffer in terms of convergence
and on average peak performance by 26%. As pointed out
in [28], the prioritized buffer can be detrimental in continuous
control problems: This characteristic is also observed in our
experiments. The advantage of MEET is well underlined in
the environment with the largest action space, Humanoid-v3,

2github.com/juliusott/uncertainty-buffer
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Fig. 1: Comparison of MEET (blue), Uniform (green), and
Prioritized (orange) Sampling Strategies on MuJoCo

by the increasing performance gap. In addition, the soft-actor
critic is not saturating with MEET sampling.

5. CONCLUSION

The main contribution of this paper is a method for pri-
oritized sampling of transitions that trades off exploration-
exploitation. To this end, the uncertainty estimation of the
Q-Value function is used to sample more relevant transitions
for the learning process. The experiments show that the pre-
sented algorithm outperforms existing methods on simulated
scenarios. When benchmarked on the MuJoCo simulation
environments, the MEET sampling consistently outperforms
existing methods on convergence speed and performance by
26%. This paper evaluates MEET’s performance on classical
control tasks in which the action space is continuous. In fu-
ture work, we expect to evaluate our approach in a discrete
action space and with sparse rewards. Especially for the
latter, we believe that the exploitation term is beneficial.
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