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Abstract

Multi-task learning has attracted much attention due to growing multi-purpose re-
search with multiple related data sources. Moreover, transduction with matrix comple-
tion is a useful method in multi-label learning. In this paper, we propose a transductive
matrix completion algorithm that incorporates a calibration constraint for the features
under the multi-task learning framework. The proposed algorithm recovers the incom-
plete feature matrix and target matrix simultaneously. Fortunately, the calibration
information improves the completion results. In particular, we provide a statistical
guarantee for the proposed algorithm, and the theoretical improvement induced by
calibration information is also studied. Moreover, the proposed algorithm enjoys a
sub-linear convergence rate. Several synthetic data experiments are conducted, which
show the proposed algorithm out-performs other existing methods, especially when the
target matrix is associated with the feature matrix in a nonlinear way.

1 Introduction

With the advent of the big data era, massive amounts of information and data have been
collected by modern high-tech devices, including web servers, environmental sensors, x-ray
imaging machines, and so on. Based on multiple data sources related to learning pur-
poses, algorithms have been developed to achieve various learning goals. Multi-task learning
(MTL) [1], for example, implements a robust learner for multiple tasks incorporating multi-
ple sources, and it can be widely used in practice, including web search, medical diagnosis,
natural language processing, and computer version.

∗An abridged version of this paper will appear in the 2023 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2023).
E-mail addresses: hengfang@fjnu.edu.cn, yasminzhang@ucla.edu, maoxj@sjtu.edu.cn, wangzl@xmu.edu.cn.
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MTL has advantages for analyzing the multi-response structure. For i “ 1, . . . , n, let
yi P Rm be the vector of interest of length m, where n is the number of instances, and each
element corresponds to a particular task. Denote Y “ pyijq to be the nˆm response matrix,
consisting of the n realizations of yi. If the responses for a specific task are categorical, it
is essentially a multi-label learning problem. As for continuous responses, it turns out to be
a multi-response regression problem if additional features are available. As the exponential
family is flexible to handle different data types, regardless of categorical or continuous, for
each task, we assume that yij independently comes from an exponential family distribution
with parameter z‹,ij, which forms Z‹ “ pz‹,ijq. The goal is to learn the underlying Z‹

based on Y. Moreover, entries of Y may suffer from missingness which makes it difficult
to learn Z‹. To tackle this difficulty and estimate Z‹ simultaneously, matrix completion
(MC) [2, 3, 4, 5, 6] algorithms have been developed under the low-rank and other regularity
assumptions. The recovery of the target matrix without any additional features is studied
in [7]. Noisy MC is investigated in [8, 9] from the exponential family with fully observed
features.

In MTL problems, features related to the responses may exist, but it is inevitable that
such features also suffer from missingness. Goldberg et al. (2010) [10] studied such a problem
under multi-label learning. Specifically, they studied single-task binary response matrix
given feature matrix where both matrices were subject to missingness. Xu et al. (2018)
[11] proposed the co-completion method by additionally penalizing the trace norm of the
feature matrix. A recent work [12] considered this problem via a smoothed rank function
approach. Under the noiseless case, [13] studied the error rate in the scenario with corrupted
side information.

Calibration [14, 15, 16] is widely used to incorporate such prior knowledge in the learning
procedure, and it improves the estimation efficiency. In this vein, [17] studied the calibration
with local polynomial regression between responses and features. Later, [18] generalized this
idea to the so-called model calibration under a parametric framework. Afterward, [19] gen-
eralized the idea to a functional type calibration equation. As far as we know, no calibration
related work has been done under the MC framework.

In this paper, we focus on MTL problems incorporating incomplete features, and we
assume that certain prior knowledge about the features is also available. Our work can be
embodied in the following toy example. For the well-known Netflix movie rating problem
[20], we aim to simultaneously complete rating and like-dislike matrices incorporating an
incomplete feature matrix, consisting of age, gender, and so on. However, all three matrices
suffer from missingness. When additional information such as the summary statistics for
age, gender, etc., can be obtained from the census survey, we investigate the benefits of such
additional information incorporated by the calibration method. In a nutshell, we propose
a Transductive Matrix Completion with Calibration (TMCC) algorithm, and the prior in-
formation about the features is considered by an additional calibration constraint. As far
as we know, this is the first paper exploring multi-task learning under a matrix completion
framework with calibration. Methodologically, our method has two merits: (i) the target
and feature matrices can be completed simultaneously; (ii) calibration information can be
incorporated. Theoretically, we show the statistical guarantee of our method, and the ben-
efit of calibration is also discussed. Besides, we have validated that the convergence rate of
the proposed algorithm is Op1{k2q. Numerically, synthetic data experiments show that our
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proposed method performs better than other existing methods, especially when the target
matrix has a nonlinear transformation from the feature matrix.

Notations. Denote rns as the set t1, . . . , nu. Given an arbitrary matrix S “ psijq P Rn1ˆn2 ,
the Frobenius norm of S is }S}F “ p

řn1

i“1

řn2

j“1 s
2
ijq

1{2. Denote the singular values of S as
σ1pSq, . . . , σn1^n2pSq in descending order. The operator norm is }S} “ σmaxpSq “ σ1pSq and
the nuclear norm }S}‹ “

řn1^n2

i“1 σipSq. Besides, let σminpSq “ σn1^n2pSq.

2 Model and Algorithm

Suppose there are S response matrices, Yp1q, . . . ,YpSq. For example, Yp1q can be a like-
dislike matrix, and Yp2q can be a rating matrix, whose rows correspond to users, columns
correspond to movies, and S “ 2. Denote the number of instances by n, the number of
tasks for s-th response matrix by ms. For s P rSs, we have Ypsq “ py

psq

ij q P Rnˆms , and y
psq

ij

can be either discrete or continuous for i P rns. We assume that within the same response
matrix, all entries follow the same generic exponential family. For example, all entries of
Yp1q follow Bernoulli distributions with different success probabilities. Let R

psq
y “ pr

psq

y,ijq P

Rnˆms be the corresponding indicator matrix for Ypsq. In particular, if y
psq

ij is observed,

then r
psq

y,ij “ 1; otherwise, r
psq

y,ij “ 0. Furthermore, assume that Ypsq is generated from a

low-rank matrix Z
psq
‹ “ pz

psq

‹,ijq P Rnˆms by the exponential family via a base function hpsq

and a link function gpsq, namely, the density function f psqpy
psq

ij |z
psq

‹,ijq “ hpsqpy
psq

ij q expty
psq

ij z
psq

‹,ij ´

gpsqpz
psq

‹,ijqu, for s P rSs. For instance, suppose gpsqpz
psq

‹,ijq “ σ2pz
psq

‹,ijq
2{2 and hpsqpy

psq

ij q “

p2πσ2q´1{2 exp t´py
psq

ij q2{p2σ2qu, and the corresponding exponential family is the Gaussian

distribution with mean σ2z
psq

‹,ij and variance σ2 with support R.
Denote X‹ “ px‹,ijq P Rnˆd as the true feature matrix consisting of d feature, and it is

assumed to be low-rank. Let X “ pxijq P Rnˆd be a noisy version of the true feature matrix,
i.e., X “ X‹ ` ϵ, where ϵ “ pϵijq P Rnˆd is a noise matrix with Epϵq “ 0, and its entries
are independent. As the feature matrix is also incomplete, in a similar fashion, we denote
Rx “ prx,ijq P Rnˆd as the corresponding indicator matrix of X. That is, we only observe
an incomplete matrix Rx ˝ X, where ˝ denotes the Hadamard product. Let target matrix
Z‹ “ rZ

p1q
‹ , . . . ,Z

pSq
‹ s be the collection of hidden parameter matrices. Our goal is to recover

Z‹. We believe that some hidden connection between X‹ and Z‹ may provide us benefits
for MTL.

Our method can be illustrated in Fig 1, where logitppq “ logtp{p1´ pqu, for p P p0, 1q. In
this example, we have three observed matrices whose entries are from Bernoulli, Gaussian,
and Poisson distributions, correspondingly, and are subject to missingness. In addition, we
have an incomplete feature matrix related to the target matrix and calibration information
for the true feature matrix. By the proposed TMCC algorithm, we can complete the true
feature matrix and target matrix simultaneously.

Given density functions tf psquSs“1, or collection of tgpsquSs“1 and thpsquSs“1, the negative
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Figure 1: Algorithm Illustration, where a Question Mark Represents a Missing Value.

quasi log-likelihood function for Z: is

ℓ0
`

Z:
˘

“ ´

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij log
!

f psq
py

psq

ij |z
:psq

ij q

)

“

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

”!

´y
psq

ij z
:psq

ij ` gpsq
´

z
:psq

ij

¯)

` log
!

hpsq
py

psq

ij q

)ı

(1)

where Z: “ rZ:p1q, . . . ,Z:pSqs and Z:psq “ pz
:psq

ij q P Rnˆms . As the argument Z: is irrelevant
with the second term of (1), we refine (1) as

ℓ
`

Z:
˘

“

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij z
:psq

ij ` gpsq
´

z
:psq

ij

¯)

.

Let Y “ rYp1q, . . . ,YpSqs be the collection of each specific task, D “ d `
řS

s“1ms and
M‹ be the concatenated matrix rX‹,Z‹s P RnˆD. Suppose we have an additional calibration
constraintAX‹ “ B, whereA andB are available. To incorporate the calibration constraint,
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the estimation procedure can be formulated as

xM “ argmin
M:PRnˆD

„

1

nD

"

ℓ
`

Z:
˘

`
1

2

›

›Rx ˝
`

X:
´ X

˘
›

›

2

F

*

`τ1
›

›AX:
´ B

›

›

2

F
` τ2

›

›M:
›

›

‹

ı

“: argmin
M:PRnˆD

fτ1
`

M:
˘

` τ2
›

›M:
›

›

‹

“: argmin
M:PRnˆD

Lτ1,τ2

`

M:
˘

, (2)

whereM: “ rX:,Z:s, xM “ rpX, pZs and we employ the commonly used square loss to complete
the feature part. One trivial case is that when the calibration information is strong enough,
i.e., A is invertible, the feature matrix X‹ can be exactly recovered. Note that our learning
object is quite general. When S “ 1, the entries within the only response matrix come
from Bernoulli distributions, and there’s no third term related to calibration in (2), our
learning object degenerates to the case considered in [10], and [11]. However, [10] had an
additional assumption that there exists a linear relationship between the feature matrix and
the hidden parameter matrix. We do not make such a structural assumption. Besides, [11]
used additional nuclear norms to penalize the feature matrix for single task learning. When
there is no feature information, the objective function will degenerate to the case in [7].

We propose a Transductive Matrix Completion with Calibration (TMCC) algorithm to
obtain the estimator in (2). In the algorithm, the ij-th element of the gradient Bfτ1pM:q

with respect to M: is

Bfτ1pM:
qij “

$

’

’

’

&

’

’

’

%

rx,ij
nD

´

x:

ij ´ xij

¯

` 2τ1pA
TAX:

´ ATBqij, for j P rds,

ry,ij
nD

#

´y
psq

ij˝
`

Bgpsqpz
:psq

ij˝
q

Bz
:psq

ij˝

+

, for
s´1
ÿ

k“1

mk ` d ă j ď

s
ÿ

k“1

mk ` d,

where j˝ “ j´d´
řs´1

k“1mk. For any generic matrix S with the singular value decomposition
(SVD) S “ UΣVT, Σ “ diagpσiq, σ1 ě ¨ ¨ ¨ ě σr and r “ rankpSq. Denote the singular
value soft threshold operator by TcpSq “ Udiagppσi ´ cq`qVT for a constant c ą 0 and
x` “ maxpx, 0q. The detailed algorithm is presented in Algorithm 1. The parameter K is a
predetermined integer that controls the learning depth of TMCC, and η is a predetermined
constant for the step size. Within the algorithm, κ in the Algorithm 1 is a predetermined
stopping criterion. The proposed algorithm iteratively updates the gradient and does singular
value thresholding (SVT) [21], in addition to an accelerated proximal gradient decent [22]
step to get a fast convergence rate.

3 Theoretical Guarantee

In this section, we first provide convergence rate analysis for TMCC algorithm. Before that,
we make the following technical assumptions.

5



Algorithm 1: TMCC algorithm

Input: Incomplete matrices X, Y; indicator matrices Rx, Ry; calibration constraint
matrices A and B, tuning parameters τ1, τ2; learning depth K, step size η,
stopping criterion κ.

Initialize: Random matrices Mp0q “ Mp1q P RnˆD, c “ 1.
1 for k “ 1 to K do
2 Compute θ “ pc ´ 1q{pc ` 2q.

3 Compute Q “ p1 ` θqMpkq ´ θMpk´1q.
4 Compute T “ Q ´ ηBfτ1pQq.

5 Compute Mpk`1q “ Tητ2pTq.

6 if Lτ1,τ2pMpk`1qq ą Lτ1,τ2pMpkqq then
7 c “ 1;
8 else
9 c “ c ` 1;

10 if
ˇ

ˇLτ1,τ2pMpk`1qq ´ Lτ1,τ2pMpkqq
ˇ

ˇ ď κ then
11 M; “ Mpk`1q;
12 break;

Output: M;

Assumption 1. There exists a positive constant pmin such that

min

„"

min
sPrSs

min
pi,jqPrnsˆrmss

π
psq

y,ij

*

,

"

min
pi,jqPrnsˆrds

πx,ij

*ȷ

ě pmin,

where πx,ij “ Pprx,ij “ 1q, π
psq

y,ij “ Ppr
psq

y,ij “ 1q. Further, there exists a positive constant γ
such that

max

ˆ„

max
iPrns

tπx,i¨ ` πy,i¨u

ȷ

,

„

max
jPrds

πx,¨j

ȷ

,

„

max
sPrSs

max
jPrmss

π
psq

y,¨j

ȷ˙

ď γ,

where πx,i¨ “
ř

jPrds
πx,ij, πx,¨j “

ř

iPrns
πx,ij, π

psq

y,¨j “
ř

iPrns
π

psq

y,ij, πy,i¨ “
ř

sPrSs

ř

jPrmss
π

psq

y,ij.

Assumption 2. There exists a positive constant α, such that max t}X‹}
8
, }Z‹}

8
u ď α.

Assumption 3. Let D “ r´α ´ δ, α ` δs, for some δ ą 0. For any z P D, there exist
positive constants Lα and Uα, such that Lα ď pgpsqq2pzq ď Uα, where gpsq is the link function
of exponential family for s-th response matrix, for s P rSs.

Assumption 4. There exists a positive constant ζ, for any λ P R, such that Epeλϵijq ď eλ
2ζ{2,

where ϵij’s are noises for the feature matrix.

Assumption 5. There exists a constant C ą 0, such that σminpAq ě C ą 0.
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Assumption 1 controls the sampling probabilities for our model. The first part ensures
that all the sampling probabilities are bounded away from zero. The second part aims to
bound the operator norm of a Rademacher matrix of the same dimension as M‹ stochas-
tically. Although we assume that the parameter matrix Z‹ is bounded in Assumption 2,
the support of entries in Y can be unbounded. For instance, the support of a Poisson
distribution is unbounded, while its mean is fixed. In other words, Assumption 2 implies
M‹ P G8pαq :“ tG P RnˆD : }G}8 ď αu. Assumption 3 is mild under the canonical expo-
nential family framework. That is, we have Varpysij|g

spzs‹,ijqq “ pgpsqq2pzs‹,ijq ą 0 for each i, j.

We extend it a little bit with tolerance δ for ease of proof. Furthermore, define L̃α “ pLα^1q

and Ũα “ pUα_ζ_1q. Assumption 4 implies that the errors for the feature matrix come from
sub-Gaussian distributions. Assumption 5 indicates that the calibration matrix A should be
of full rank. The following Theorem 1 shows the convergence rate of the proposed algorithm
is Op1{k2q.

Theorem 1. Suppose that Assumption 1 „ 4 hold, τ1 ď c1minrtσmaxpAqu´2pnDαq´1{2,
tnDσ2

minpAqu´1L̃αpmins and τ2 “ pnDq´12c2tpŨαq1{2 _ 1{δutγ1{2 ` plogpn _ Dqq3{2u. The
sequences tMpkqu generated by Algorithm 1 satisfy

fτ1
`

Mpkq
˘

´ fτ1 pM‹q ď
2L̃

›

›Mp0q ´ M‹

›

›

2

F

ηpk ` 1q2
,

with probability at least 1 ´ 4{pn ` Dq, where L̃ is a constant related to c1 and α1{2Ũα.

The following theorem presents the statistical guarantee for the proposed method.

Theorem 2. Suppose that Assumption 1 „ 4 hold, τ1 ď tnDσ2
minpAqu´1c1L̃αpmin and τ2 “

pnDq´12c2tpŨαq1{2_1{δutγ1{2`plogpn_Dqq3{2u. Then, with probability as least 1´4{pn`Dq,
"

1

nD
`

8τ1

L̃αpmin

σ2
minpAq

*

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F

ď
crankpM‹q

nDp2min

#

α2
`

Ũα _ 1{δ2

L̃2
α

+

␣

γ ` log3pn _ Dq
(

, (3)

where c, c1, c2 are positive constants.

Theorem 2 implies that our recovered error for the target matrix, in the sense of squared
Frobenius norm, is bounded by the right hand side of (3), with probability approaching 1
when n and D are large enough. Suppose the feature matrix is also regarded as a response
matrix from Gaussian noise with unit variance, by directly applying the Theorem 7 in [7], we

have pnDq´1p}pX´X‹}2F `}pZ´Z‹}2F q less than the terms in the second line of (3). Fortunately,
with the help of calibration information, we have a constant order improvement. Specifically,
together with Assumption 5, we have

1

nD

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F

piq
ă

"

1

nD
`

8τ1

L̃αpmin

σ2
minpAq

*

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F
,

where the inequality piq is strict, which is one of the main theoretical contributions of this
paper.
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4 Experiments

We conduct a simulation study to illustrate the performance of the proposed method. LetP P

Rnˆr and Q P Rdˆr whose entries are generated independently from a uniform distribution
over p0, 1q. Then, letX0

‹ “ PQT andX‹ “ X0
‹{}X0

‹}8. We further generate coefficient matrix
Wpsq P Rdˆms whose elements are independently generated from a uniform distribution
over p0, 1q for s “ 1, 2, 3. Let rZ

psq
‹ “ X‹W

psq. We call this setting as “linear” case. By

normalization, we have Z
psq
‹ “ rZ

psq
‹ {}rZ

psq
‹ }8. Specifically, Yp1q has Bernoulli entries with

support t0, 1u, Yp2q has Poisson entries and Yp3q has Gaussian entries with known σ2 “ 1.
All the link between Ypsq and Zpsq are the same as those in Section 2. For calibration
information, suppose we know the column means for X‹, i.e., A “ p1{nq11ˆn and B “ AX‹.

On the other hand, we have a “nonlinear” case, i.e., we assume that rZ
psq
‹ is generated by

an element-wise nonlinear transformation of X‹. Specifically, let z
psq

‹,ij “ tpsqpx‹,ijq, where

tp1qpxq “ x2 ` x ` 0.5, tp2qpxq “ ´x2 ´ x, tp3qpxq “ ´x2 ´ 2x ` 0.2. The normalization
procedure is the same as the “linear” case. The proposed method TMCC is compared with
three other approaches.

1. MC 0: Exactly the same as modified TMCC except for the gradient updating
procedure. No calibration information is considered. Therefore in Bfτ1pM:qij the term
2τ1pA

TAX: ´ ATBqij is eliminated.
2. CMC SI: Collective matrix completion (CMC) [7] is used to complete the parameters

for the target matrix, and Soft-Impute (SI) method from [23] is used to complete the feature
matrix separately.

3. TS: A two-stage method, where, at the first stage, only the feature matrix is imputed
by the Soft-Impute method, and at the second stage, the method MC 0 is applied to the
concatenated matrix joined by the feature matrix and the observed response matrices.

Specifically, MC 0 and TMCC share the same strategy, i.e. simultaneously recovering all
matrices, while CMC SI chooses to recover separately and TS opts to recover step by step.

In the experiments, we set n “ 1500, d “ 500, m1 “ m2 “ m3 “ 500 and choose
learning depth K “ 1000 and stopping criterion κ “ 10´7. Further, we compare different
methods with rank r P t5, 10, 15u. The missing rate ν P t60%, 80%u of both the feature
matrix and response matrix are the same in each experiment. For TMCC, we tune τ1 and τ2
on one independent validation set and apply the same parameters to all other repeated 50
simulations. Further, other compared methods employ the same procedure as TMCC while
they only have to be tuned for the parameter τ2.

The performance of each method is evaluated via the mean value and standard deviation
of the relative errors (RE) based on repeated experiments. Specifically, the relative error

of a recovered feature matrix is REppXq “ }pX ´ X‹}F {}X‹}F and that of target matrix

REppZq “ }pZ ´ Z‹}F {}Z‹}F . Experiment results are summarized in Fig 2 and Fig 3.
In Fig 2, it is an unsurprising fact that TMCC surpasses MC 0 with the help of calibration

information. For instance, in the linear case with ν “ 60%, the mean of RE of X̂ by MC 0
is 0.51 with standard error (SE) 0.0417 when r “ 5 while that by TMCC is 0.25 with SE
0.0040. TMCC’s RE is less than half of MC 0’s and situations in other cases are alike.
Besides, CMC SI and TS perform the best in all scenarios. Specifically, the mean of RE of
X̂ by CMC SI is 0.01 with SE 0.0005, and that by TS is 0.01 with SE 0.0006 when r “ 10 in
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Figure 2: Relative Error of Feature Matrix (with the Black Lines Representing ± the Stan-
dard Error)

Figure 3: Relative Error of Target Matrix (with the Black Lines Representing ± the Standard
Error)

the nonlinear case with ν “ 60%. It is because both CMC SI and TS complete the feature
matrix without considering the target matrix. However, our primary goal is to recover Z‹,
i.e., achieving a low relative error of Ẑ. In Fig 3, the far lower relative error of X̂ by CMC SI
and TS does not bring a lower relative error of Ẑ. Of all the four approaches, CMC SI is
the only one that fails to take advantage of the feature matrix to recover the target matrix.
That is why it attains the greatest relative error of the target matrix. For example, its mean
of RE of Ẑ is 0.46 with SE 0.0046 when r “ 15 in the linear case with ν “ 80% and 0.53
with SE 0.0057 when r “ 15 in the nonlinear case with ν “ 60%, more than twice of the
other three methods. Besides, TS, MC 0, and TMCC behave similarly in the linear case
while they display great differences in the nonlinear case. When the relationship between
X‹ and Z‹ is not linear, simultaneously recovering demonstrates great strength compared
with recovering step by step and recovering separately. In the nonlinear case with ν “ 80%,
the means of RE of Ẑ by CMC SI, TS, MC 0, and TMCC are 0.66, 0.58, 0.52, and 0.46
respectively when r “ 5. Situations in other cases are almost the same. What is noteworthy
is that TMCC also overtakes MC 0 with respect to target matrices, which implies the power
of calibration information again. Overall, relatively low standard errors indicate the stability
of these algorithms.
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5 Conclusion

We proposed a statistical framework for multi-task learning under exponential family matrix
completion framework with known calibration information. Statistical guarantee of our
proposed estimator has been shown and a constant order improvement is achieved compared
with existing methods. We have also shown that the proposed algorithm has a convergence
rate of Op1{k2q. The simulation study also shows that our proposed method has numerical
benefits.
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A Technical Details

In this appendix, we provide technical proofs and computational time comparisons for our
main article. Specifically, it is organized as follows:

• Section B introduces necessary preliminary;

• Section C presents proof of Theorem 1;

• Section D presents proof of Theorem 2;

• Section E provides auxiliary lemmas.

• Section F provides computational time comparison for the simulations.

B PRELIMINARY

In the following, we investigate the theoretical properties of the proposed TMCC algorithm.
Before going through those theoretical results, we first introduce some useful matrix norm
inequalities. For two matrices S and T with the same dimension, define the inner product
in terms of the trace of the matrix product, i.e., xS,Ty “ trpSTTq. We have trace duality
inequality

ˇ

ˇtrpSTTq
ˇ

ˇ ď }S} }T}
‹
, (4)

and bound for nuclear norm

}S}
‹

ď
a

rankpSq }S}F . (5)

Further,

σminpSq }T}F ď }ST}F , (6)

where the proof of (6) is presented in Lemma 2. Suppose the SVD of S is USΣSV
T
S . Let

rPS “ SpSTSq´1ST be the projection matrix based on S. Define PK
S pTq “ rPUK

S
TrPVK

S
, where

FK “ pI ´ rPFqF for a matrix F. Notice that PK
S pTq is not a projection since it is not

idempotent. Let PSpTq “ T ´ PK
S pTq and we have

rank tPSpTqu ď 2rankpSq. (7)

By [24], we have

}S}
‹

´ }T}
‹

ď }PSpS ´ Tq}
‹

`
›

›PK
S pS ´ Tq

›

›

‹
. (8)

Finally, we define the Bregman divergence.

Definition 1. Let C be a closed set. For a continuously-differentiable function F : C Ñ R,
the Bregman divergence associated with F between x, y P C is

dF px, yq “ F pxq ´ F pyq ´ x∇F pyq, x ´ yy.
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Mathematically, dF px, yq is equivalent to the first-order Taylor expansion error of F pxq

evaluated at y.
Denote ΣR to be an n ˆ D matrix, consisting of i.i.d. Rademacher sequences tξx,ij : i P

rns, j P rdsu and tξ
psq

y,ij : i P rns, j P rmssu for s P rSs. Specifically,

ΣR “

pn,dq
ÿ

pi,jq

ξx,ijrx,ijEx,ij `

S
ÿ

s“1

pn,msq
ÿ

pi,jq

ξ
psq

y,ijr
psq

y,ijE
psq

y,ij,

where Ex,ij “ eipnqejpDqT and E
psq

y,ij “ eipnqej̃pDqT are RnˆD matrices lying in the set of

canonical bases, eiplq is the j-th unit vector of length l and j̃ “ j ` d `
řs´1

t“1 mt.

C PROOF OF THEOREM 1

Proof. Given two arbitrary matrices S, T P RnˆD, we have

|fτ1pSq ´ fτ1pTq|

“

ˇ

ˇ

ˇ

!

ℓ̃pSq ´ ℓ̃pTq

)

´ τ1
␣

}A pS ´ M‹q}
2
F ´ }A pT ´ M‹q}

2
F

(

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
ℓ̃pSq ´ ℓ̃pTq

ˇ

ˇ

ˇ
` τ1

ˇ

ˇ

␣

}A pS ´ M‹q}
2
F ´ }A pT ´ M‹q}

2
F

(ˇ

ˇ

ď

›

›

›
∇ℓ̃

´

ĂM
¯›

›

›
}S ´ T}

‹
` τ1σ

2
1pAq }S ´ T}F }S ` T ´ 2M‹}F

ď

!?
n ^ D

›

›

›
∇ℓ̃

´

ĂM
¯
›

›

›
` 2τ1σ

2
1pAq

?
nDα

)

}S ´ T}F ,

where ĂM P G8pαq. We focus on bound of }∇ℓ̃pĂMq}.
›

›

›
∇ℓ̃

´

ĂM
¯›

›

›

ď

›

›

›
∇ℓ̃pM‹q

›

›

›
`

›

›

›
∇ℓ̃pĂMq ´ ∇ℓ̃pM‹q

›

›

›

ď

›

›

›
∇ℓ̃pM‹q

›

›

›
`

1

nD

›

›

›

›

›

›

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ijE
psq

y,ij ˆ

!

pgpsq
q

1
pz̃

psq

‹,ijq ´ pgpsq
q

1
pz

psq

‹,ijq

)

`
ÿ

pi,jqPrnsˆrds

rx,ijEx,ij tg1
Npx̃ijq ´ g1

Npxijqu

›

›

›

›

›

›

ď

›

›

›
∇ℓ̃pM‹q

›

›

›
`

Ũα

nD

›

›

›

›

›

›

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ijE
psq

y,ij

ˇ

ˇ

ˇ
z̃

psq

‹,ij ´ z
psq

‹,ij

ˇ

ˇ

ˇ
`

ÿ

pi,jqPrnsˆrds

rx,ijEx,ij |x̃ij ´ xij|

›

›

›

›

›

›

ď

c2p
a

Ũα _ 1{δq

”

?
γ ` tlogpn _ Dqu

3{2
ı

nD
`

2
?
nDαŨα

nD

ď
c3

?
nD

.
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Therefore, as long as τ1 ď c1tσ1pAqu´2pnDαq´1{2, there exists positive constant L̃ “ 2c1 ` c3
such that fτ1p¨q is L̃-Lipchitz. The remaining proof can be obtained by followed the proof of
Theorem 4.1 in [22].

D PROOF OF THEOREM 2

Proof. In general, we use the connection between exponential family distributions and Breg-
man divergence to argue the basic inequality implied by our estimation procedure. Then, a
key quantity can be bounded and the results can be obtained by the standard argument for
matrix completion. Specifically, by basic inequality, we have

1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij ẑ
psq

ij ` gpsq
pẑ

psq

ij q

)

`
ÿ

pi,jqPrnsˆrds

rx,ij
2

px̂ij ´ xijq
2

fi

fl

` τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

›

›

›

xM
›

›

›

‹

ď
1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij z‹,ij ` gpsq
pz

psq

‹,ijq

)

`
ÿ

pi,jqPrnsˆrds

rx,ij
2

px‹,ij ´ xijq
2

fi

fl

` τ1 }AX‹ ´ B}
2
F ` τ2 }M‹}

‹

“
1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij z‹,ij ` gpsq
pz

psq

‹,ijq

)

`
ÿ

pi,jqPrnsˆrds

rx,ij
2

px‹,ij ´ xijq
2

fi

fl ` τ2 }M‹}
‹
,

where the calibration information implies the last equality. Let gNpxq “ x2{2, expanding
quadratic terms of xij, and we have

1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij ẑ
psq

ij ` gpsq
pẑ

psq

ij q

)

`
ÿ

pi,jqPrnsˆrds

rx,ij t´xijx̂ij ` gNpx̂ijqu

fi

fl

` τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

›

›

›

xM
›

›

›

‹

ď
1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij z‹,ij ` gpsq
pz

psq

‹,ijq

)

`
ÿ

pi,jqPrnsˆrds

rx,ij t´xijx‹,ij ` gNpx‹,ijqu

fi

fl ` τ2 }M‹}
‹
.
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Rearranging the terms, we obtain

1

nD

¨

˝

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

”

´y
psq

ij

´

pz
psq

ij ´ z
psq

‹,ij

¯

`

!

gpsq
ppz

psq

ij q ´ gpsq
pz

psq

‹,ijq

)ı

`

ÿ

pi,jqPrnsˆrds

rx,ij ˆ r´xijpx̂ij ´ x‹,ijq ` tgNpx̂ijq ´ gNpx‹,ijqus

˛

‚

ď ´ τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

´

}M‹}
‹

´

›

›

›

xM
›

›

›

‹

¯

“ ´ τ1

›

›

›
A
´

pX ´ X‹

¯›

›

›

2

F
` τ2

´

}M‹}
‹

´

›

›

›

xM
›

›

›

‹

¯

. (9)

Plug in the Bregman divergence into (9) with (4), and we have

1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

!

r
psq

y,ijdgpsq

´

pz
psq

ij , z
psq

‹,ij

¯)

`
ÿ

pi,jqPrnsˆrds

!

r
psq

x,ijdgN ppxij, x‹,ijq

)

fi

fl

ď ´ τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

´

}M‹}
‹

´

›

›

›

xM
›

›

›

‹

¯

´

1

nD

»

–

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij ˆ

!

`

gpsq
˘1

pz
psq

‹,ijq ´ y
psq

ij

)´

pz
psq

ij ´ z
psq

‹,ij

¯

`

ÿ

pi,jqPrnsˆrds

rx,ij tpgNq
1
px‹,ijq ´ xiju px̂ij ´ x‹,ijq

fi

fl

“ ´ τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

´

}M‹}
‹

´

›

›

›

xM
›

›

›

‹

¯

´ x∇ℓ̃pM‹q,xM ´ M‹y

ď ´ τ1

›

›

›
ApX ´ B

›

›

›

2

F
` τ2

´

}M‹}
‹

´

›

›

›

xM
›

›

›

‹

¯

`

›

›

›
∇ℓ̃pM‹q

›

›

›

›

›

›

xM ´ M‹

›

›

›

‹
, (10)

where ℓ̃pM‹q “ pnDq´1rℓpZ‹q`
ř

pi,jqPrnsˆrds
rx,ij ˆt´xijx‹,ij `gNpx‹,ijqus. With an additional

assumption that τ2 ě 2}∇ℓ̃pM‹q}, together with (5) and (7), (10) yields

1

nD

$

&

%

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ijdgpsq

´

pz
psq

ij , z
psq

‹,ij

¯

`
ÿ

pi,jqPrnsˆrds

rx,ijdgN px̂ij, x‹,ijq

,

.

-

ď
3τ2
2

›

›

›
PM

´

xM ´ M‹

¯›

›

›

‹
´ τ1

›

›

›
A
´

pX ´ X‹

¯›

›

›

2

F

ď
3τ2
2

a

2rankpM‹q

›

›

›

xM ´ M‹

›

›

›

F
´ τ1

›

›

›
A
´

pX ´ X‹

¯
›

›

›

2

F
. (11)

Meanwhile, as Lαpx ´ yq2 ď 2dgpsqpx, yq ď Uαpx ´ yq2 and 2dgN px, yq “ px ´ yq2, we have

∆2
ℓ̃

ď
2

L̃αnD

$

&

%

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ijdgpsq

´

pz
psq

ij , z
psq

‹,ij

¯

`
ÿ

pi,jqPrnsˆrds

rx,ijdgN px̂ij, x‹,ijq

,

.

-

,
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where

∆2
ℓ̃

“
1

nD

$

&

%

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

´

pz
psq

ij ´ z
psq

‹,ij

¯2

`
ÿ

pi,jqPrnsˆrds

rx,ij px̂ij ´ x‹,ijq
2

,

.

-

. (12)

Put (11) and (12) together, and we obtain

∆2
ℓ̃

ď
2

L̃α

"

3τ2
2

a

2rankpM‹q

›

›

›

xM ´ M‹

›

›

›

F
´ τ1

›

›

›
A
´

pX ´ X‹

¯
›

›

›

2

F

*

. (13)

With Lemma 1 and 5 in the Appendix, follow the proof of Theorem 3 in [7], our main
theorem is proved.

E AUXILIARY LEMMAS

Lemma 1. Let arbitrary matrices S,T P G8pαq. Assume that τ2 ě 2}∇ℓ̃pTq} and ℓ̃pSq `

τ2}S}‹ ď ℓ̃pTq ´ τ1}ApSrds ´ Trdsq}2F ` τ2}T}‹, where Srds consists of the first d columns of
S. Then we have

1.
›

›PK
TpS ´ Tq

›

›

‹
ď 3 }PTpS ´ Tq}F ´ 2τ1τ

´1
2 σ2

minpAq
›

›Srds ´ Trds

›

›

2

F
,

2. }S ´ T}
‹

ď 4
a

2rankpTq }S ´ T}F ´ 2τ1τ
´1
2 σ2

minpAq
›

›Srds ´ Trds

›

›

2

F
.

Proof. Rearranging the terms, we have

τ2 p}S}
‹

´ }T}
‹
q ď ℓ̃pTq ´ ℓ̃pSq ´ τ1

›

›ApSrds ´ Trdsq
›

›

2

F
. (14)

By convexity of ℓ̃p¨q and (4), we have

ℓ̃pTq ´ ℓ̃pSq ď x∇ℓ̃pTq,T ´ Sy ď

›

›

›
∇ℓ̃pTq

›

›

›
}T ´ S}

‹
ď

τ2
2

}T ´ S}
‹
. (15)

Plug (15) in (14) with (8), and we obtain

τ2
›

›PK
TpS ´ Tq

›

›

‹
´ τ2 }PTpS ´ Tq}

‹
ď

τ2
2

}T ´ S}
‹

´ τ1
›

›ApSrds ´ Trdsq
›

›

2

F
.

Rearranging terms, we have

›

›PK
TpS ´ Tq

›

›

‹

ď3 }PTpS ´ Tq}
‹

´
2τ1
τ2

›

›ApSrds ´ Trdsq
›

›

2

F

ď3 }PTpS ´ Tq}
‹

´
2τ1
τ2

σ2
minpAq

›

›pSrds ´ Trdsq
›

›

2

F
,
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where the first part is proved. For the second part, we have

}S ´ T}
‹

“
›

›PK
TpS ´ Tq ` PTpS ´ Tq

›

›

‹

ď
›

›PK
TpS ´ Tq

›

›

‹
` }PTpS ´ Tq}

‹

ď4 }PTpS ´ Tq}
‹

´
2τ1
τ2

σ2
minpAq

›

›pSrds ´ Trdsq
›

›

2

F

ď4
a

2rankpTq }S ´ T}F ´
2τ1
τ2

σ2
minpAq

›

›Srds ´ Trds

›

›

2

F
.

Lemma 2. Given S and T of arbitrary matrices with the same dimension,

σminpSq }T}F ď }ST}F .

Proof. By singular value decomposition, let S “ USΛSV
T
S and T “ UTΛTV

T
T. Then by the

cyclic property of trace operator,

}ST}
2
F “

›

›USΣSV
T
SUTΣTV

T
T

›

›

2

F

“ tr
`

VTΣTU
T
TVSΣSU

T
SUSΣSV

T
SUTΣTV

T
T

˘

“ tr
`

VSΣ
2
SV

T
SUTΣTV

T
TVTΣTU

T
T

˘

ě σ2
minpSqTr

`

UTΣTV
T
TVTΣTU

T
T

˘

“ σ2
minpSq }T}

2
F .

The following three lemmas can be adapted from [7].

Lemma 3 (Modified Lemma 5 of [7]). Suppose that Assumption 1 holds. There exists a
positive constant c, such that

E p}ΣR}q ď

c
!

?
γ `

a

log pn _ Dq

)

nD
.

Lemma 4 (Modified Lemma 6 of [7]). Suppose that Assumption 1, 3 and 4 hold and there
exists a positive constant c, such that

›

›

›
∇ℓ̃pM‹q

›

›

›
ď

cp
a

Ũα _ 1{δq

”

?
γ ` tlogpn _ Dqu

3{2
ı

nD

holds with probability at least 1 ´ 4{pn ` Dq.
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Lemma 5 (Modified Lemma 19 of [7]). Suppose that Assumption 1 „ 3 hold. Let β “

946ppminnDq´1α2 logpn ` Dq. Let

HpM‹, α, β, µ, θq “

!

H P G8pαq : }H ´ M‹}
‹

ď
?
µ }H ´ M‹}F ´ θ

›

›Hrds ´ M‹rds

›

›

2

F
,

1

nD

›

›

›

xM ´ M‹

›

›

›

2

Π,F
ą β

*

.

Then, for any H P HpM‹, α, β, µ, θq,

ˇ

ˇ

ˇ

ˇ

∆ℓ̃pH,M‹q ´
1

nD
}H ´ M‹}

2
Π,F

ˇ

ˇ

ˇ

ˇ

ď
1

2nD
}H ´ M‹}

2
Π,F `

1392nDα2µ

pmin

tEp}ΣR}qu
2

`
5567α2

nDpmin

,

with probability at least 1 ´ 4pn ` Dq´1.

F Computational Time Comparison

In terms of accuracy, our algorithm outperforms others. For the computational time, our
algorithm enjoys a sublinear rate, which is the same as the CMS SI method. Besides, TS
and MC 0 methods are just small deviations from TMCC method, and they enjoy the
same sublinear convergence rate. We present the computational behavior among different
methods under the missing rate ν “ 80%, rank r = 15 with 50 trials. Further, the stopping
criterion for the objective is κ “ 1e ´ 7. For TS, the first stage (Feature matrix recovery)
stopping criterion is κ0 “ 1e ´ 12. The results are presented in Table 1, where the running
time for TS consists of the time for the first stage plus that for the second stage. The results
show the comparable elapsed time for the four methods.

Table 1: Computational Time for Different Scenarios.

Transformation Measure CMC SI TS MC 0 TMCC

Linear
Average Time(s) 569.82 1865.40(185.19+1680.21) 676.20 926.53

Standard Error 78.19 801.61(107.40+753.79) 50.86 125.39

Nonlinear
Average Time(s) 271.78 1072.69(201.79+870.90) 1141.88 1108.50

Standard Error 28.13 323.55(110.12+255.70) 476.88 247.77
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