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ABSTRACT
Multi-task learning has attracted much attention due to growing
multi-purpose research with multiple related data sources. More-
over, transduction with matrix completion is a useful method in
multi-label learning. In this paper, we propose a transductive matrix
completion algorithm that incorporates a calibration constraint for
the features under the multi-task learning framework. The proposed
algorithm recovers the incomplete feature matrix and target matrix
simultaneously. Fortunately, the calibration information improves
the completion results. In particular, we provide a statistical guar-
antee for the proposed algorithm, and the theoretical improvement
induced by calibration information is also studied. Moreover, the
proposed algorithm enjoys a sub-linear convergence rate. Several
synthetic data experiments are conducted, which show the proposed
algorithm out-performs other methods, especially when the target
matrix is associated with the feature matrix in a nonlinear way.

Index Terms— Matrix completion, multi-task learning

1. INTRODUCTION

With the advent of the big data era, massive amounts of information
and data have been collected by modern high-tech devices, including
web servers, environmental sensors, x-ray imaging machines, and
so on. Based on multiple data sources related to learning purposes,
algorithms have been developed to achieve various learning goals.
Multi-task learning (MTL) [1], for example, implements a robust
learner for multiple tasks incorporating multiple sources, and it can
be widely used in practice, including web search, medical diagnosis,
natural language processing, and computer version.

MTL has advantages for analyzing the multi-response structure.
For i “ 1, . . . , n, let yi P Rm be the vector of interest of length m,
where n is the number of instances, and each element corresponds to
a particular task. Denote Y “ pyijq to be the nˆm response matrix,
consisting of the n realizations of yi. If the responses for a specific
task are categorical, it is essentially a multi-label learning problem.
As for continuous responses, it turns out to be a multi-response re-
gression problem if additional features are available. As the expo-
nential family is flexible to handle different data types, regardless of
categorical or continuous, for each task, we assume that yij indepen-
dently comes from an exponential family distribution with parameter
z‹,ij , which forms Z‹ “ pz‹,ijq. The goal is to learn the underlying
Z‹ based on Y. Moreover, entries of Y may suffer from missing-
ness which makes it difficult to learn Z‹. To tackle this difficulty and
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estimate Z‹ simultaneously, matrix completion (MC) [2, 3, 4, 5, 6]
algorithms have been developed under the low-rank and other reg-
ularity assumptions. The recovery of the target matrix without any
additional features is studied in [7]. Noisy MC is investigated in
[8, 9] from the exponential family with fully observed features.

In MTL problems, features related to the responses may exist,
but it is inevitable that such features also suffer from missingness.
Goldberg et al. (2010) [10] studied such a problem under multi-label
learning. Specifically, they studied single-task binary response ma-
trix given feature matrix where both matrices were subject to miss-
ingness. Xu et al. (2018) [11] proposed the co-completion method
by additionally penalizing the trace norm of the feature matrix. A
recent work [12] considered this problem via a smoothed rank func-
tion approach. Under the noiseless case, [13] studied the error rate
in the scenario with corrupted side information.

Calibration [14, 15, 16] is widely used to incorporate such prior
knowledge in the learning procedure, and it improves the estimation
efficiency. In this vein, [17] studied the calibration with local poly-
nomial regression between responses and features. Later, [18] gener-
alized this idea to the so-called model calibration under a parametric
framework. Afterward, [19] generalized the idea to a functional type
calibration equation. As far as we know, no calibration related work
has been done under the MC framework.

In this paper, we focus on MTL problems incorporating incom-
plete features, and we assume that certain prior knowledge about the
features is also available. Our work can be embodied in the follow-
ing toy example. For the well-known Netflix movie rating problem
[20], we aim to simultaneously complete rating and like-dislike ma-
trices incorporating an incomplete feature matrix, consisting of age,
gender, and so on. However, all three matrices suffer from missing-
ness. When additional information such as the summary statistics
for age, gender, etc., can be obtained from the census survey, we in-
vestigate the benefits of such additional information incorporated by
the calibration method. In a nutshell, we propose a Transductive Ma-
trix Completion with Calibration (TMCC) algorithm, and the prior
information about the features is considered by an additional calibra-
tion constraint. As far as we know, this is the first paper exploring
multi-task learning under a matrix completion framework with cali-
bration. Methodologically, our method has two merits: (i) the target
and feature matrices can be completed simultaneously; (ii) calibra-
tion information can be incorporated. Theoretically, we show the
statistical guarantee of our method, and the benefit of calibration is
also discussed. Besides, we have validated that the convergence rate
of the proposed algorithm is Op1{k2

q. Numerically, synthetic data
experiments show that our proposed method performs better than
other existing methods, especially when the target matrix has a non-
linear transformation from the feature matrix.

Notations. Denote rns as the set t1, . . . , nu. Given an ar-
bitrary matrix S “ psijq P Rn1ˆn2 , the Frobenius norm ofIC
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S is }S}F “ p
řn1

i“1

řn2
j“1 s

2
ijq

1{2. Denote the singular values
of S as σ1pSq, . . . , σn1^n2pSq in descending order. The oper-
ator norm is }S} “ σmaxpSq “ σ1pSq and the nuclear norm
}S}‹ “

řn1^n2
i“1 σipSq. Besides, let σminpSq “ σn1^n2pSq.

2. MODEL AND ALGORITHM

Suppose there are S response matrices, Yp1q, . . . ,YpSq. For ex-
ample, Yp1q can be a like-dislike matrix, and Yp2q can be a rat-
ing matrix, whose rows correspond to users, columns correspond to
movies, and S “ 2. Denote the number of instances by n, the num-
ber of tasks for s-th response matrix by ms. For s P rSs, we have
Ypsq

“ py
psq

ij q P Rnˆms , and y
psq

ij can be either discrete or continu-
ous for i P rns. We assume that within the same response matrix, all
entries follow the same generic exponential family. For example, all
entries of Yp1q follow Bernoulli distributions with different success
probabilities. Let Rpsq

y “ pr
psq

y,ijq P Rnˆms be the corresponding
indicator matrix for Ypsq. If ypsq

ij is observed, then r
psq

y,ij “ 1; other-
wise, rpsq

y,ij “ 0. Furthermore, assume that Ypsq is generated from a
low-rank matrix Z

psq
‹ “ pz

psq

‹,ijq P Rnˆms by the exponential family
via a base function hpsq and a link function gpsq, namely, the density
function f psq

py
psq

ij |z
psq

‹,ijq “ hpsq
py

psq

ij q expty
psq

ij z
psq

‹,ij ´ gpsq
pz

psq

‹,ijqu,
for s P rSs. For instance, suppose gpsq

pz
psq

‹,ijq “ σ2
pz

psq

‹,ijq
2
{2

and hpsq
py

psq

ij q “ p2πσ2
q

´1{2 exp t´py
psq

ij q
2
{p2σ2

qu, and the corre-
sponding exponential family is the Gaussian distribution with mean
σ2z

psq

‹,ij and variance σ2 with support R.
Denote X‹ “ px‹,ijq P Rnˆd as the true feature matrix consist-

ing of d feature, and it is assumed to be low-rank. Let X “ pxijq P

Rnˆd be a noisy version of the true feature matrix, i.e., X “ X‹ `ϵ,
where ϵ “ pϵijq P Rnˆd is a noise matrix with Epϵq “ 0, and its en-
tries are independent. As the feature matrix is also incomplete, in a
similar fashion, we denote Rx “ prx,ijq P Rnˆd as the correspond-
ing indicator matrix of X. That is, we only observe an incomplete
matrix Rx ˝ X, where ˝ denotes the Hadamard product. Let target
matrix Z‹ “ rZ

p1q
‹ , . . . ,Z

pSq
‹ s be the collection of hidden parameter

matrices. Our goal is to recover Z‹. We believe that some hidden
connection between X‹ and Z‹ may provide us benefits for MTL.

Our method can be illustrated in Fig 1, where logitppq “

logtp{p1 ´ pqu, for p P p0, 1q. In this example, we have three
observed matrices whose entries are from Bernoulli, Gaussian, and
Poisson distributions, correspondingly, and are subject to missing-
ness. In addition, we have an incomplete feature matrix related to
the target matrix and calibration information for the true feature
matrix. By the proposed TMCC algorithm, we can complete the true
feature matrix and target matrix simultaneously.

Given density functions tf psq
u
S
s“1, or collection of tgpsq

u
S
s“1

and thpsq
u
S
s“1, the negative quasi log-likelihood function for Z: is

ℓ0

´

Z
:
¯

“ ´

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq
y,ij

log

"

f
psq

py
psq
ij

|z
:psq
ij

q

*

“

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq
y,ij

„"

´y
psq
ij

z
:psq
ij

` g
psq

ˆ

z
:psq
ij

˙*

` log

"

h
psq

py
psq
ij

q

*ȷ

(1)

where Z:
“ rZ:p1q, . . . ,Z:pSq

s and Z:psq
“ pz

:psq

ij q P Rnˆms . As
Z: is irrelevant with the second term of (1), we refine (1) as

ℓ
´

Z
:
¯

“

S
ÿ

s“1

ÿ

pi,jqPrnsˆrmss

r
psq

y,ij

!

´y
psq

ij z
:psq

ij ` g
psq

´

z
:psq

ij

¯)

.
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C
C
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Fig. 1: Algorithm Illustration.

Let Y “ rYp1q, . . . ,YpSq
s be the collection of tasks, D “ d `

řS
s“1 ms and M‹ be the concatenated matrix rX‹,Z‹s P RnˆD .

Suppose we have an additional calibration constraint AX‹ “ B,
where A and B are available. To incorporate the calibration con-
straint, the estimation procedure can be formulated as

xM “ argmin
M:PRnˆD

„

1

nD

"

ℓ
´

Z
:
¯

`
1

2

›

›

›
Rx ˝

´

X
:

´ X
¯
›

›

›

2

F

*

`τ1

›

›

›
AX

:
´ B

›

›

›

2

F
` τ2

›

›

›
M

:
›

›

›

‹

ȷ

“: argmin
M:PRnˆD

fτ1

´

M
:
¯

` τ2

›

›

›
M

:
›

›

›

‹

“: argmin
M:PRnˆD

Lτ1,τ2

´

M
:
¯

, (2)

where M:
“ rX:,Z:

s, xM “ r pX, pZs and we employ the commonly
used square loss to complete the feature part. One trivial case is that
when the calibration information is strong enough, i.e., A is invert-
ible, the feature matrix X‹ can be exactly recovered. Note that our
learning object is quite general. When S “ 1, the entries within the
response matrix come from Bernoulli distributions, and there’s no
third term related to calibration in (2), our learning object degener-
ates to the case considered in [10], and [11]. However, [10] had an
additional assumption that there exists a linear relationship between
the feature matrix and the hidden parameter matrix. We do not make
such a structural assumption. Besides, [11] used additional nuclear
norms to penalize the feature matrix for single task learning. When
there is no feature information, the objective function will degener-
ate to the case in [7].

We propose a Transductive Matrix Completion with Calibration
(TMCC) algorithm to obtain the estimator in (2). In the algorithm,
the ij-th element of the gradient Bfτ1pM:

q with respect to M: is

Bfτ1 pM
:

qij “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

rx,ij

nD

´

x
:
ij ´ xij

¯

` 2τ1pA
T
AX

:
´ A

T
Bqij

for j P rds,

ry,ij

nD

$

&

%

´y
psq

ij˝
`

Bgpsq
pz

:psq

ij˝
q

Bz
:psq

ij˝

,

.

-

,

for
s´1
ÿ

k“1

mk ` d ă j ď

s
ÿ

k“1

mk ` d,

where j˝ “ j ´ d ´
řs´1

k“1 mk. For any generic matrix S with the
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Algorithm 1: TMCC algorithm
Input: Incomplete matrices X, Y; indicator matrices Rx,

Ry; calibration constraint matrices A and B, tuning
parameters τ1, τ2; learning depth K, step size η,
stopping criterion κ.

Initialize: Random matrices Mp0q
“ Mp1q

P RnˆD ,
c “ 1.

1 for k “ 1 to K do
2 Compute θ “ pc ´ 1q{pc ` 2q.
3 Compute Q “ p1 ` θqMpkq

´ θMpk´1q.
4 Compute T “ Q ´ ηBfτ1pQq.
5 Compute Mpk`1q

“ Tητ2pTq.
6 if Lτ1,τ2pMpk`1q

q ą Lτ1,τ2pMpkq
q then

7 c “ 1;
8 else
9 c “ c ` 1;

10 if
ˇ

ˇ

ˇ
Lτ1,τ2pMpk`1q

q ´ Lτ1,τ2pMpkq
q

ˇ

ˇ

ˇ
ď κ then

11 M;
“ Mpk`1q;

12 break;

Output: M;.

singular value decomposition (SVD) S “ UΣVT, Σ “ diagpσiq,
σ1 ě ¨ ¨ ¨ ě σr and r “ rankpSq. Denote the singular value soft
threshold operator by TcpSq “ Udiagppσi ´ cq`qVT for a constant
c ą 0 and x` “ maxpx, 0q. The detailed algorithm is presented
in Algorithm 1, where a question mark represents a Missing Value.
The parameter K is a predetermined integer that controls the learn-
ing depth of TMCC, and η is a predetermined constant for the step
size. Within the algorithm, κ in the Algorithm 1 is a predetermined
stopping criterion. The proposed algorithm iteratively updates the
gradient and does singular value thresholding (SVT) [21], in addi-
tion to an accelerated proximal gradient decent [22] step to get a fast
convergence rate.

3. THEORETICAL GUARANTEE

We make the following technical assumptions.

Assumption 1. There exists a positive constant pmin such that

min

„"

min
sPrSs

min
pi,jqPrnsˆrmss

π
psq

y,ij

*

,

"

min
pi,jqPrnsˆrds

πx,ij

*ȷ

ě pmin,

where πx,ij “ Pprx,ij “ 1q, πpsq

y,ij “ Ppr
psq

y,ij “ 1q. Further, there
exists a positive constant γ such that

max

ˆ„

max
iPrns

tπx,i¨ ` πy,i¨u

ȷ

,

„

max
jPrds

πx,¨j

ȷ

,

„

max
sPrSs

max
jPrmss

π
psq

y,¨j

ȷ˙

ď γ,

where πx,i¨ “
ř

jPrds
πx,ij , πx,¨j “

ř

iPrns
πx,ij , π

psq

y,¨j “
ř

iPrns
π

psq

y,ij , πy,i¨ “
ř

sPrSs

ř

jPrmss
π

psq

y,ij .

Assumption 2. There exists a positive constant α, such that
max

␣

}X‹}
8
, }Z‹}

8

(

ď α.

Assumption 3. Let D “ r´α ´ δ, α ` δs, for some δ ą 0. For
any z P D, there exist positive constants Lα and Uα, such that

Lα ď pgpsq
q

2
pzq ď Uα, where gpsq is the link function of exponen-

tial family for s-th response matrix, for s P rSs.

Assumption 4. There exists a positive constant ζ, for any λ P R,
such that Epeλϵij q ď eλ

2ζ{2, where ϵij’s are noises for the feature
matrix.

Assumption 5. There exists a constant C such that σminpAq ě

C ą 0.

Assumption 1 controls the sampling probabilities for our model.
The first part ensures that all the sampling probabilities are bounded
away from zero. The second part aims to bound the operator norm
of a Rademacher matrix of the same dimension as M‹ stochasti-
cally. Although we assume that the parameter matrix Z‹ is bounded
in Assumption 2, the support of entries in Y can be unbounded. For
instance, the support of a Poisson distribution is unbounded, while
its mean is fixed. In other words, Assumption 2 implies M‹ P

G8pαq :“ tG P RnˆD : }G}8 ď αu. Assumption 3 is mild
under the canonical exponential family framework. That is, we have
Varpys

ij |gspzs‹,ijqq “ pgpsq
q

2
pzs‹,ijq ą 0 for each i, j. We extend

it a little bit with tolerance δ for ease of proof. Furthermore, define
L̃α “ pLα ^1q and Ũα “ pUα _ ζ _1q. Assumption 4 implies that
the errors for the feature matrix come from sub-Gaussian distribu-
tions. Assumption 5 indicates that the calibration matrix A should
be of full rank. The following Theorem 1 shows the convergence
rate of the proposed algorithm is Op1{k2

q.

Theorem 1. Suppose that Assumption 1 „ 4 hold, τ1 ď

c1 minrtσmaxpAqu
´2

pnDαq
´1{2, tnDσ2

minpAqu
´1L̃αpmins and

τ2 “ pnDq
´12c2tpŨαq

1{2
_ 1{δutγ1{2

` plogpn _ Dqq
3{2

u. The
sequences tMpkq

u generated by Algorithm 1 satisfy

fτ1

´

M
pkq

¯

´ fτ1 pM‹q ď

2L̃
›

›

›
Mp0q

´ M‹

›

›

›

2

F

ηpk ` 1q2
,

with probability at least 1´4{pn`Dq, where L̃ is a constant related
to c1 and α1{2Ũα.

The following theorem presents the statistical guarantee for the
proposed method.

Theorem 2. Suppose that Assumption 1 „ 4 hold, τ1 ď

tnDσ2
minpAqu

´1c1L̃αpmin and τ2 “ pnDq
´12c2tpŨαq

1{2
_

1{δutγ1{2
` plogpn _ Dqq

3{2
u. Then, with probability as least

1 ´ 4{pn ` Dq,
"

1

nD
`

8τ1

L̃αpmin

σ
2
minpAq

*

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F

ď
crankpM‹q

nDp2
min

#

α
2

`
Ũα _ 1{δ2

L̃2
α

+

!

γ ` log
3

pn _ Dq

)

, (3)

where c, c1, c2 are positive constants.

Theorem 2 implies that our recovered error for the target matrix,
in the sense of squared Frobenius norm, is bounded by the right hand
side of (3), with probability approaching 1 when n and D are large
enough. Suppose the feature matrix is also regarded as a response
matrix from Gaussian noise with unit variance, by directly applying
the Theorem 7 in [7], we have pnDq

´1
p} pX ´ X‹}

2
F ` }pZ ´ Z‹}

2
F q

less than the terms in the second line of (3). Fortunately, with the
help of calibration information, we have a constant order improve-
ment. Specifically, together with Assumption 5, we have
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1

nD

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F

piq
ă

"

1

nD
`

8τ1

L̃αpmin

σ
2
minpAq

*

›

›

›

pX ´ X‹

›

›

›

2

F
`

1

nD

›

›

›

pZ ´ Z‹

›

›

›

2

F
,

where the inequality piq is strict, which is one of the main theoretical
contributions of this paper.

4. EXPERIMENTS

We conduct a simulation study to illustrate the performance of the
proposed method. Let P P Rnˆr and Q P Rdˆr whose entries
are generated independently from a uniform distribution over p0, 1q.
Then, let X0

‹ “ PQT and X‹ “ X0
‹{}X0

‹}8. We further gen-
erate coefficient matrix Wpsq

P Rdˆms whose elements are in-
dependently generated from a uniform distribution over p0, 1q for
s “ 1, 2, 3. Let rZpsq

‹ “ X‹W
psq. We call this setting as “linear”

case. By normalization, we have Z
psq
‹ “ rZ

psq
‹ {}rZ

psq
‹ }8. Specifi-

cally, Yp1q has Bernoulli entries with support t0, 1u, Yp2q has Pois-
son entries and Yp3q has Gaussian entries with known σ2

“ 1.
All the link between Ypsq and Zpsq are the same as those in Sec-
tion 2. For calibration information, suppose we know the column
means for X‹, i.e., A “ p1{nq11ˆn and B “ AX‹. On the
other hand, we have a “nonlinear” case, i.e., we assume that rZpsq

‹

is generated by an element-wise nonlinear transformation of X‹.
Specifically, let zpsq

‹,ij “ tpsq
px‹,ijq, where tp1q

pxq “ x2
` x ` 0.5,

tp2q
pxq “ ´x2

´ x, tp3q
pxq “ ´x2

´ 2x ` 0.2. The normalization
procedure is the same as the “linear” case. The proposed method
TMCC is compared with three other approaches.

1. MC 0: Exactly the same as modified TMCC except for the
gradient updating procedure. No calibration information is consid-
ered. Therefore in Bfτ1pM:

qij the term 2τ1pATAX:
´ATBqij is

eliminated.
2. CMC SI: Collective matrix completion (CMC) [7] is used to

complete the parameters for the target matrix, and Soft-Impute (SI)
method from [23] is used to complete the feature matrix separately.

3. TS: A two-stage method, where, at the first stage, only the
feature matrix is imputed by the Soft-Impute method, and at the sec-
ond stage, the method MC 0 is applied to the concatenated matrix
joined by the feature matrix and the observed response matrices.

Specifically, MC 0 and TMCC share the same strategy, i.e. si-
multaneously recovering all matrices, while CMC SI chooses to re-
cover separately and TS opts to recover step by step.

In the experiments, we set n “ 1500, d “ 500, m1 “ m2 “

m3 “ 500 and choose learning depth K “ 1000 and stopping cri-
terion κ “ 10´7. Further, we compare different methods with rank
r P t5, 10, 15u. The missing rate ν P t60%, 80%u of both the fea-
ture matrix and response matrix are the same in each experiment.
For TMCC, we tune τ1 and τ2 on one independent validation set and
apply the same parameters to all other repeated 50 simulations. Fur-
ther, other compared methods employ the same procedure as TMCC
while they only have to be tuned for the parameter τ2.

The performance of each method is evaluated via the mean value
and standard deviation of the relative errors (RE) based on repeated
experiments. Specifically, the relative error of a recovered feature
matrix is REp pXq “ } pX ´ X‹}F {}X‹}F and that of target matrix
REppZq “ }pZ ´ Z‹}F {}Z‹}F . Experiment results are summarized
in Fig 2 and Fig 3.

In Fig 2, it is an unsurprising fact that TMCC surpasses MC 0

Fig. 2: Relative Error of Feature Matrix (with the Black Lines Rep-
resenting ± the Standard Error)

Fig. 3: Relative Error of Target Matrix (with the Black Lines Repre-
senting ± the Standard Error)

with the help of calibration information. For instance, in the linear
case with ν “ 60%, the mean of RE of X̂ by MC 0 is 0.51 with stan-
dard error (SE) 0.0417 when r “ 5 while that by TMCC is 0.25 with
SE 0.0040. TMCC’s RE is less than half of MC 0’s and situations in
other cases are alike. Besides, CMC SI and TS perform the best in
all scenarios. Specifically, the mean of RE of X̂ by CMC SI is 0.01
with SE 0.0005, and that by TS is 0.01 with SE 0.0006 when r “ 10
in the nonlinear case with ν “ 60%. It is because both CMC SI
and TS complete the feature matrix without considering the target
matrix. However, our primary goal is to recover Z‹, i.e., achieving
a low relative error of Ẑ. In Fig 3, the far lower relative error of X̂
by CMC SI and TS does not bring a lower relative error of Ẑ. Of
all the four approaches, CMC SI is the only one that fails to take
advantage of the feature matrix to recover the target matrix. That
is why it attains the greatest relative error of the target matrix. For
example, its mean of RE of Ẑ is 0.46 with SE 0.0046 when r “ 15
in the linear case with ν “ 80% and 0.53 with SE 0.0057 when
r “ 15 in the nonlinear case with ν “ 60%, more than twice of the
other three methods. Besides, TS, MC 0, and TMCC behave sim-
ilarly in the linear case while they display great differences in the
nonlinear case. When the relationship between X‹ and Z‹ is not
linear, simultaneously recovering demonstrates great strength com-
pared with recovering step by step and recovering separately. In the
nonlinear case with ν “ 80%, the means of RE of Ẑ by CMC SI,
TS, MC 0, and TMCC are 0.66, 0.58, 0.52, and 0.46 respectively
when r “ 5. Situations in other cases are almost the same. What is
noteworthy is that TMCC also overtakes MC 0 with respect to target
matrices, which implies the power of calibration information again.
Overall, relatively low standard errors indicate the stability of these
algorithms.

5. CONCLUSION

We proposed a statistical framework for multi-task learning under
exponential family matrix completion framework with known cali-
bration information. Statistical guarantee of our proposed estimator
has been shown and a constant order improvement is achieved com-
pared with existing methods. We have also shown that the proposed
algorithm has a convergence rate of Op1{k2

q. The simulation study
also shows that our proposed method has numerical benefits.
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