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Background

§ Multi-task learning (MTL, Caruana, 1997) implements a robust learner for multiple tasks incorporating
multiple sources, and it is commonly used in practice:
§ web search,
§ medical diagnosis,
§ natural language processing,
§ computer version.

§ In MTL problems, features related to the responses may exist.

§ However, it is inevitable that such features also suffer from missingness.

§ External data sources have become available recently:
§ Summary statistics from census,
§ Summary information from other study,
§ ......

§ Incorporating external information may improve estimation efficiency.

§ However, seldom is done by calibration (Deville and Särndal, 1992) in the area of matrix completion.

Contribution

§ Propose a Transductive Matrix Completion with Calibration (TMCC) algorithm to achieve the following
goals:
§ Complete the feature and task matrices symultaneously.
§ Incorporate summary information by calibration.

§ Theorecal properites:
§ Convergence rate is Opk´2q.
§ Constant order improvement is achieved using calibration.

Notations
§ S : number of different types of task matrices.

§ For s P rSs,

§ Y psq
“ py

psq

ij q P Rnˆms : a task matrix suffers from missingness.

§ Z psq
‹ “ pz

psq

‹,ijq P Rnˆms : low-rank distribution parameter such that
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§ hpsq and g psq are the base function and the link function, respectively.

§ Rpsq
y “ pr

psq

y ,ijq P Rnˆms : indicator matrix for Y psq.

§ X “ pxijq P Rnˆd : noisy feature matrix suffers from missingness.

§ X ‹ “ px‹,ijq P Rnˆd : low-rank true feature matrix such that X “ X ‹ ` ϵ.

§ Rx “ prx ,ijq P Rnˆd : indicator matrix for X .

§ A and B: available external summary information such that AX ‹ “ B.

Illustration

Figure 1: Algorithm Illustration.
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§ ℓ pZ q: negative quasi log-likelihood function,

§ M:
“ rX :,Z :

s,

§ xM “ r pX , pZ s.

Algorithm

Algorithm 1: TMCC algorithm

Input: Incomplete matrices X , Y ; indicator matrices Rx , Ry ; calibration constraint matrices A and
B, tuning parameters τ1, τ2; learning depth K , step size η, stopping criterion κ.

Initialize: Random matrices Mp0q
“ Mp1q

P RnˆD , c “ 1.
1 for k “ 1 to K do
2 Compute θ “ pc ´ 1q{pc ` 2q.

3 Compute Q “ p1 ` θqMpkq
´ θMpk´1q.

4 Compute T “ Q ´ ηBfτ1pQq.

5 Compute Mpk`1q
“ Tητ2pT q.

6 if Lτ1,τ2pM
pk`1q

q ą Lτ1,τ2pM
pkq

q then
7 c “ 1;
8 else
9 c “ c ` 1;

10 if
ˇ

ˇ

ˇ
Lτ1,τ2pM

pk`1q
q ´ Lτ1,τ2pM

pkq
q

ˇ

ˇ

ˇ
ď κ then

11 M;
“ Mpk`1q;

12 break;

Output: M;.

Theoretical properties

Theorem

Under regularity conditions, we have
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,

with probability at least 1 ´ 4{pn ` Dq, where L̃ is a constant related with other parameters.
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where c, c1, c2 are positive constants.

§ Under the assumption that the feature matrix is also regarded as a response matrix from Gaussian noise
with unit variance, by comparing Theorem 7 in Apaya and Klopp (2019), we have a constant order
improvement with the help of calibration infromation.

§ Under generality condition, we have
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where the inequality piq is strict, which is one of the main theoretical contributions of this paper.

Experiments
§ Setup:

§ X ‹ “ X 0
‹{}X 0

‹}8,
§ X 0

‹ “ PQT ,
§ P P Rnˆr and Q P Rdˆr .

§ Z psq
‹ “ rZ

psq

‹ {}rZ
psq

‹ }8 for s “ 1, 2, 3,
§ Linear case:
§ rZ

psq

‹ “ X ‹W psq,
§ W psq

P Rdˆms .

§ Nonlinear case:
§ z

psq

‹,ij “ tpsqpx‹,ijq,

§ tp1qpxq “ x2 ` x ` 0.5,
§ tp2qpxq “ ´x2 ´ x ,
§ tp3qpxq “ ´x2 ´ 2x ` 0.2.

§ For the target matrices,
§ Y p1q has Bernoulli entries with support t0, 1u,

§ Y p2q has Poisson entries,

§ Y p3q has Gaussian entries with known σ2 “ 1.

§ For the external information, set A “ p1{nq11ˆn and B “ AX ‹.
§ n “ 1500, d “ 500, m1 “ m2 “ m3 “ 500.

§ Algorithms:

§ MC 0: Same as TMCC, but without calibration.

§ CMC SI: Collective matrix completion (Alaya and Klopp, 2019) is used to complete the parameters
for the target matrix, and Soft-Impute method from (Mazumder et al., 2010) is used to complete
the feature matrix separately.

§ TS: A two-stage method, where, at the first stage, only the feature matrix is imputed by the
Soft-Impute method, and at the second stage, the method MC 0 is applied to the concatenated
matrix joined by the feature matrix and the observed response matrices.

§ Evaluation creiteria:

§ Relative error (RE):

REpxMq “ }xM ´ M‹}F{}M‹}F ,

§ M‹: a certain target matrix suffering from missingness,

§ xM : completed matrix.

Figure 2: Relative Error of Feature Matrix (with the Black Lines Representing Â˘theStandardErrorq

Figure 3: Relative Error of Target Matrix (with the Black Lines Representing Â˘theStandardErrorq
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