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> Multi-task learning (MTL, Caruana, 1997) implements a robust learner for multiple tasks incorporating > Setup:
multiple sources, and it is commonly used in practice: M = arg min [_D {g (ZT) - HR 5 (XT )HF} » X, XO/HXOHOO,
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» External data sources have become available recently:
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. ¢ (Z): negative quasi log-likelihood function,
> Summary statistics from census,
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> For the target matrices,
» Y@ has Bernoulli entries with support {0, 1},
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> Incorporating external information may improve estimation efficiency. > Y has Poisson entries,
» Y®) has Gaussian entries with known o2 = 1.

Algorithm
S > For the external information, set A = (1/n)1;,, and B = AX,.

> However, seldom is done by calibration (Deville and Sarndal, 1992) in the area of matrix completion.

. . Algorithm 1: TMCC algorithm » n = 1500, d = 500, m; = my = m3 = 500.
Contribution . . . o . . » Alsorithms:
Input: Incomplete matrices X, Y’; indicator matrices R, R\; calibration constraint matrices A and gorithms.
> Propose a Transductive Matrix Completion with Calibration (TMCC) algorithm to achieve the following B, tuning parameters 71, T»; learning depth K, step size 1, stopping criterion . » MC_0: Same as TMCC, but without calibration.
goals: Initialize: Random matrices M© = M) e R™P ¢ = 1. » CMC SI: Collective matrix completion (Alaya and Klopp, 2019) is used to complete the parameters
> Complete the feature and task matrices symultaneously. 1for k =1to K do for the target matrix, and Soft-Impute method from (Mazumder et al., 2010) is used to complete
> Incorporate summary information by calibration. 2 | Compute 0 = (c—1)/(c+2). the feature matrix separately.
» Theorecal properites: 3 | Compute Q = (1+ H)M(k) — oML, » TS: A two-stage method, where, at the first stage, only the feature matrix is imputed by the
» Convergence rate is O(k2). 4 | Compute T = Q — nif,(Q). Soft-Impute method, and at the second stage, the method MC_0 is applied to the concatenated
> Constant order improvement is achieved using calibration. 5 | Compute M1 — T, (T). matrix joined by the feature matrix and the observed response matrices.
6 | if L, ,(M*V)y> £ (M®) then » Evaluation creiteria:
Notations 7 | c=1 > Relative error (RE):
. : 8 | else M) = M
> S: number of different types of task matrices. o tc Y RE(M) = [M — M.[¢/|M.|F,
» For s € |S], = ,
(s) [ ] (s) _ o 10 if | (M(k+1)) Ny (M(k)) < « then » M.,: a certain target matrix suffering from missingness,
» YW = (yl-j ) € R™™s: a task matrix suffers from missingness. 1,72 e L2 = + M- completed matrix
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» h(s) and g((ss))are the base function- and the link fu-nction, respectively. Theoretical properties E N : N
» R = (r'*)y e R™Ms: indicator matrix for Y'*. s - MC 0
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» X = (x;) € R™: noisy feature matrix suffers from missingness. Theorem |
» X, = (x.j) € R™% low-rank true feature matrix such that X = X, + €. o
R d. -1 : Under regularity conditions, we have
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» A and B: available external summary information such that AX, = B. e £ (M 2LH/W< ) — M. |2 X
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lllustration with probability at least 1 — 4/(n + D), where [ is a constant related with other parameters. . Linear. v =60% Linear. v =80% Nonlinear. v = 60% Nonlinear. v = 80%
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I Target Matrix g Figure 3: Relative Error of Target Matrix (with the Black Lines Representing A+ttheStandardError)
) e eawre it O mean (Gaussian) log of mean (Poisson) g » Under the assumption that the feature matrix is also regarded as a response matrix from Gaussian noise
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Figure 1: Algorithm Illustration.

where the inequality (/) is strict, which is one of the main theoretical contributions of this paper. large incomplete matrices. Journal of Machine Learning Research 11 (Aug), 2287-2322.




