Variational Message Passing-based Respiratory Motion **Estimation and Detection Using Radar Signals**

Jakob Möderl, Erik Leitinger, Franz Pernkopf and Klaus Witrisal

Abstract

- Detect infants in cars using UWB radar.
- Considering multipath propagation and clutter.
- Use respiratory motion to differentiate the target from the clutter.
- Approximate model evidence for the detection.

Conclusion

Multipath information boosts SNR!

Channel, respiratory motion and model evidence estimated by variational message passing (VMP).

Signal Model

Received signal can be modeled as outer

- product of respiratory motion and channel $\boldsymbol{R} = \boldsymbol{h}\boldsymbol{b}^{\mathsf{T}} + \mathsf{AWGN} + \mathsf{clutter}, \quad \boldsymbol{R} \in \mathbb{C}^{N \times M}.$
- **Channels** *h* are modeled as independent Gaussian processes and cover the multipath propagation inside the car.
- **Respiratory motion** *b* is also modeled as Gaussian process.
- Additive white Gaussian **noise** (AWGN) with unknown precision λ .
- **Clutter** is assumed static and removed by subtracting the mean over slow time.

Illustrations

Signal Processing and Speech Communications Laboratory I Inffeldgasse 16C/EG, 8010 Graz, Austria I *jakob.moederl@tugraz.at*

Detection

- Bayes: compare model evidence
- $p(\text{occupied}) \leq p(\text{empty}).$
- Obtain p(occupied) by integrating out \boldsymbol{b} , \boldsymbol{h} and the (unknown) noise precision λ
- $p(\mathbf{R}|\mathbf{b}, \mathbf{h}, \lambda) \cdot p(\mathbf{b})p(\mathbf{h})p(\lambda) d\mathbf{b} d\mathbf{h} d\lambda.$ $p(\text{occupied}) \propto I$ posterior $p(\boldsymbol{b}, \boldsymbol{h}, \lambda | \boldsymbol{R})$
- Solving the integral is not feasible! Solution: approximate posterior with simpler distribution to make integral tractable \rightarrow VMP.

$$p(\boldsymbol{b},\boldsymbol{h},\boldsymbol{\lambda}|\boldsymbol{R}) \approx q(\boldsymbol{b},\boldsymbol{h},\boldsymbol{\lambda})$$

 $p(\mathbf{occupied}) \approx \mathcal{L}(q)$

Estimated respiration Reconstructed signal True – Estimate Received signal Time in s Time in s Radar measurement example (high SNR).

robability

etection

 \bigcap

Message Passing

Maximize the evidence lower bound (ELBO) $\mathcal{L}(q)$ to approximate evidence

 $p(\mathsf{occupied}) = \mathcal{L}(q) + \mathcal{D}_{\mathsf{KL}}(q||p)$

based on the approximating distribution

 $q(\boldsymbol{b}, \boldsymbol{h}, \lambda) = q_{\mathsf{b}}(\boldsymbol{b}) \cdot q_{\mathsf{h}}(\boldsymbol{h}) \cdot q_{\lambda}(\lambda).$

Using conjugate priors results in distributions from well known families:

 $q_{\mathsf{b}}(\boldsymbol{b}) = \mathsf{N}(\boldsymbol{b}; \, \hat{\boldsymbol{b}}, \hat{\boldsymbol{C}}_{\mathsf{b}})$

 $q_{\mathsf{h}}(\boldsymbol{h}) = \mathsf{CN}(\boldsymbol{h}; \, \hat{\boldsymbol{h}}, \hat{\boldsymbol{C}}_{\mathsf{h}})$

 $q_{\lambda}(\lambda) = \mathbf{Ga}(\lambda; NM, NM/\hat{\lambda})$

Only update of parameters \hat{b} , \hat{C}_{b} , \hat{h} , \hat{C}_{h} and $\hat{\lambda}$ needed in each iteration.

Results

Measurement in 2 cars with 34 persons. 2 minutes per person, 10s frames.

Comparison approaches: FFT: maximum of FFT over slow time. Estimator-correlator (EC): based on factorized covariance $C_{\mathsf{R}} = C_{\mathsf{b}} \otimes C_{\mathsf{h}}$.

