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ABSTRACT

This paper presents a novel neural module for enhancing ex-
isting fast and lightweight 2D human pose estimation CNNs,
in order to increase their accuracy. A baseline stem CNN is
augmented by a collateral module, which is tasked to encode
global spatial and semantic information and provide it to the
stem network during inference. The latter one outputs the
final 2D human pose estimations. Since global information
encoding is an inherent subtask of 2D human pose estima-
tion, this particular setup allows the stem network to better
focus on the local details of the input image and on precisely
localizing each body joint, thus increasing overall 2D human
pose estimation accuracy. Furthermore, the collateral mod-
ule is designed to be lightweight, adding negligible runtime
computational cost, so that the unified architecture retains the
fast execution property of the stem network. Evaluation of
the proposed method on public 2D human pose estimation
datasets shows that it increases the accuracy of different base-
line stem CNNs, while outperforming all competing fast 2D
human pose estimation methods.

Index Terms— 2D human pose estimation, skeleton es-
timation, Convolutional Neural Networks, Generative Adver-
sarial Networks.

1. INTRODUCTION
2D human pose estimation (2D HPE) from RGB images con-
sists in estimating the 2D pixel coordinates of a predefined set
of human body joints on the corresponding 2D input image.
Given the current prevalence of computer vision (e.g., [1]),
2D HPE has become an important algorithmic component in
applications that involve visually captured human activities.
Critical examples include traffic control gesture recognition
[2] and pedestrian intention recognition [3]. There, 2D HPE
is typically employed as a pre-processing step to extract 2D
human skeletons from each video frame, before they are fed
as input to the corresponding task classifier/recognizer [4, 5].

Estimating 2D human poses from RGB images can be
challenging, as humans may be depicted under a huge range
of body postures and/or in highly different scenes and scales.
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Furthermore, occlusion of specific body parts (e.g., arms,
legs) is typical in most cases, rendering 2D HPE even more
challenging.

Deep Convolutional Neural Networks (CNNs) have been
effectively utilized to tackle these issues, typically by uti-
lizing down-sampling and up-sampling sub-networks in or-
der to predict high-resolution outputs, from which the 2D
human body joint positions can be obtained [6, 7]. How-
ever, the large number of calculations required by such meth-
ods, due to their multiple down-sampling/up-sampling layers,
renders them unsuitable for domains where fast execution is
crucial to ensure safety (e.g., autonomous robots) [8]. As
a result, fast and lightweight 2D HPE methods [9, 10] have
emerged, which are specifically designed to achieve high in-
ference speed in embedded systems. However, fast execution
often comes at the expense of accuracy, with potentially catas-
trophic results (e.g., noisy estimations may cause a pedestrian
intention recognition system deployed on a self-driving car to
misclassify a “crossing” pedestrian as “no-crossing”).

Motivated by the insufficient 2D HPE accuracy of the fast
approaches that are suitable for embedded execution, this pa-
per presents a method that aims to increase their accuracy
without compromising execution speed. It augments typi-
cal fast and lightweight CNN architectures with a comple-
mentary collateral CNN module which encodes global spa-
tial+semantic information and provides it during inference to
the main CNN, which we call stem network. Thus, the lat-
ter can focus on precisely localizing each body joint on the
2D input image. Global information encoding is achieved
by training the collateral module as a Generative Adversar-
ial Network (GAN) [11] that reconstructs the colored image
representation of the human body structure, while the final 2D
human poses are obtained by the stem network through body
joint heatmaps regression.

The GAN training framework ensures that the collateral
module extracts global information from the input image.
This is because the Generator only learns to output realistic-
looking colored image representations of the human body
structure (see Figure 1) that resemble the ground-truth ones,
but not necessarily match them exactly in their local de-
tails. The encoded global information flows from the collat-
eral module to the stem network through additional neural
connections that are placed between them. Thus, the stem



network exploits this information, along with the spatially
localized semantic information encoded in its own features,
to predict accurate 2D human poses.

To the best of the authors’ knowledge, global skeleton in-
formation extraction based on a collateral convolutional GAN
has not previously appeared as a separate subtask in 2D HPE
literature. The proposed novel module is designed to achieve
exactly this, in order to alleviate the cognitive load/burden of
the stem network. Fusing the features of these two subnet-
works before the final output prediction permits more accu-
rate 2D HPE, as extensive experiments on two relevant, com-
mon public datasets confirm.

2. CNN-BASED 2D HPE
Early 2D HPE approaches aimed to directly regress the 2D
body joints’ pixel coordinates (e.g., [12]). For example,
cascades of pose regressors were utilized to successively
refine the body joint estimations before obtaining the final
predictions. Under this paradigm, [12] utilized an Iterative
Error Feedback process to progressively change the initial
body joint location predictions until the error between the
estimated and ground-truth 2D human poses is minimized.

In a more recent approach, the body joint locations in the
2D input image are indirectly obtained, by regressing body
joint heatmaps [6, 7, 13, 14]. That is, the 2D pixel coordi-
nates of the heatmap maximum value indicate the location of
the corresponding body joint in the input image. Following
this approach, 2D HPE methods (e.g. [14]) designed CNN
architectures that consist of consecutive CNN modules that
process/refine their corresponding inputs to predict interme-
diate feature maps until the final body joint heatmaps are ob-
tained from the last CNN module. For instance, CPN [14]
decomposed the 2D HPE problem into two steps. In the first
step, a feature pyramid CNN is used to localize the “easy”
body joints (e.g., hands), while the resulting multi-scale fea-
ture maps are subsequently fused and fed to a second net-
work tasked to detect the “hard” body joints. In an alterna-
tive approach, a very simple CNN architecture based on con-
volutional and deconvolutional layers was proposed in [6] to
effectively obtain high-resolution body joint heatmaps, from
which the final 2D human poses can be accurately obtained.
With the same goal in mind, [7] introduced a CNN architec-
ture that was specifically designed to maintain high-resolution
feature maps through the overall procedure.

Embedded execution of 2D HPE algorithms gave rise
to methods that aimed to achieve fast inference along with
increased 2D HPE accuracy. For example, deep and shallow
sub-networks were employed in [9] to process low-resolution
and high-resolution inputs, respectively, towards obtaining
accurate body joint heatmaps in real-time. [15] designed a
lightweight version of the network architecture proposed in
[7] by replacing specific computationally intensive neural
blocks with more lightweight ones, which achieved good 2D
HPE performance with low complexity. Finally, [10] intro-

Fig. 1. Examples of input RGB images (1st row), along
with the corresponding output human body structure images
S (2nd row).

duced a lightweight CNN architecture that utilized specifi-
cally designed convolutional and deconvolutional modules to
reduce latency without hurting 2D HPE accuracy.

Differently from these approaches, the proposed method
aims to enhance the 2D HPE performance of existing fast and
lightweight architectures, while retaining fast execution. This
is achieved by explicitly guiding the two neural pathways (the
stem network and the proposed module) to separately address
the two inherent problems of 2D HPE (i.e., precise body joint
detection and global information encoding, respectively) and
effectively combine the corresponding outputs to obtain accu-
rate body joint heatmaps.

3. FAST AND ACCURATE 2D HPE
Let X ∈ RM×N×3 be an input RGB image and J be any fast
and lightweight CNN architecture that can be used to predict
2D body joint heatmaps. The proposed method focuses on
enhancing J towards increasing its 2D HPE accuracy, while
retaining its fast execution property. In this direction, J is
augmented by a collateral module A that is tasked to encode
global spatial+semantic information from the input image and
pass it to J , from which the final 2D body joint heatmaps
are obtained. In this particular setup, J is able to exploit the
information encoded by A to precisely detect each body joint
on the input image.

3.1. Global Information Encoding
Successful 2D HPE requires encoding both global and local
spatial+semantic information. A is used to encode global in-
formation and provide it to J , alleviating the latter from this
task. Thus, J exploits the information encoded by A and fo-
cuses on precisely detecting each body joint.

To achieve this, A is tasked to reconstruct a colored image
S ∈ RM×N×3 that represents the human body structure of the
person that is depicted in the corresponding input image X,
via GAN-based Image-to-Image translation (I2I) [16]. S is
carefully constructed to represent the human body structure
and also contain identical semantic information to the target
of J . This is achieved by centering a 2D Gaussian function at
the ground-truth location of each body joint, while assigning
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Fig. 2. Training and testing setup of the overall proposed network architecture.

a specific RGB value to it. Using different colors to identify
each body joint ensures that ambiguous body joint represen-
tations (e.g., left and right wrists) are distinguishable in S.
Color assignments can be arbitrary, as long as different body
joints are represented by different colors. Random input RGB
images along with their corresponding human body structure
images S can be seen in Fig. 1.

In order to encode global information via I2I, A is trained
under the GAN learning framework, which relies on the in-
teraction between a Generator and a Discriminator. There-
fore, A is designed as a decoding CNN acting on intermedi-
ate layer activations of J , serving as a GAN Generator that
produces human body structure images Ŝ that fit the corre-
sponding input images. Subsequently, a predicted Ŝ and the
corresponding input image X are jointly fed to the Discrimi-
nator D, which processes the pair and decides whether Ŝ is a
“fake” one produced by the Generator, or a ground-truth one.
A is trained using the multi-objective loss function:

LA = min
A

max
D

LGAN + βsLs + βvLv, (1)

where LGAN is the typical loss function of conditional GANs
[16], Ls is a similarity loss function based on the L1 distance
that is used to push the Generator to produce outputs that are
close to the target images and Lv is a typical cross-entropy
loss function used to train the Discriminator for predicting
body joint visibility. Essentially, Lv forces D to predict which
body joints are visible, in parallel to its main task, thus fur-
ther strengthen it. As a result, A is forced to produce more
accurate human body structure images to fool D. Finally, βs,
βv are scaling hyper-parameters.

3.2. Unified Architecture
The unified proposed network architecture can be seen in Fig.
2. J acts on the input image, while the collateral module
A acts on intermediate features maps of J . In this case, the
early layers of J play the role of the encoding network, while
A plays the role of the decoding one in a typical encoder-
decoder Generator network architecture. Information flow
between J and A is realized through connections placed be-
tween the neurons of two intermediate layers of A and J .
Thus, the semantic features of J are enriched with global in-
formation encoded by A.

The unified network is jointly trained for both I2I and for
2D body joint regression, using the following multitask loss:

L = λLJ + (1− λ)LA, (2)

where LJ is a typical body joint heatmaps regression loss that
is used to train the corresponding stem network and λ is a
hyperparameter for tuning the contribution of LJ and LA to
the total loss.

A is carefully designed to be lightweight, having in mind
fast execution speed during inference. It consists of three con-
volutional and two deconvolutional layers, in order to increase
the feature map resolution, while maintaining a relatively low
number of parameters. Each convolutional and deconvolu-
tional layer is followed by a Batch Normalization and a ReLu
layer. Also, for simplicity, all convolutional and deconvolu-
tional layers use 3 × 3 kernels. D is based on a standard
PatchGAN [16] classifier, which was extended by an extra
fully connected layer for the joint visibility classification task.
J can be any fast dense image prediction CNN. Note that dur-
ing the inference stage, the two last layers of A and the entire
Discriminator D can be completely discarded to avoid com-
putational overhead.

4. EXPERIMENTAL EVALUATION
The unified network architecture was trained using (2) for 200
epochs. J and A were trained using a learning rate of 0.01,
which is reduced in each epoch using the “poly” learning rate
strategy. D is trained with a constant learning rate of 0.00002.
In all cases, the Adam optimizer was used. The batch size was
64, while λ in (2) was empirically set to λ = 0.7, in order to
promote the 2D HPE task over I2I. The scaling hyperparame-
ters βs and βv were set to 1 and 0.1, respectively, ensuring the
smooth training of A. The online training data augmentation
method of [7] was also adopted.

The proposed method was evaluated on two public 2D
HPE datasets, COCO Keypoints 2017 [17] and MPII Human
Pose [18], following the common two-stage top-down evalu-
ation paradigm [6, 7, 14]. In order to ensure a fair compar-
ison, the person detections provided by [6, 7] are used both
for COCO val2017 and test-dev2017 sets. In MPII, each per-
son location is provided with the dataset. The average pre-
cision (AP) and average recall (AR) metrics are reported for
COCO, while for MPII, the head-normalized probability of
correct keypoint (PCKh@0.5) metric is used. Execution speed
is measured in Frames Per Second (FPS). Execution speed
is also used as a fair model complexity measurement, since
the numbers of model parameters and flops that are typically
reported involve only specific layers of the model (convo-
lutional, linear), ignoring any extra calculations required by
other operations (e.g., resizing, addition, multiplication, etc.).



Table 1. Results on enhancing the baselines BiSeNet [19] and
Lite-HRNet [15] on the COCO [17] val2017 set and the MPII
[18] validation set.

Method Backbone

COCO val2017 MPII val
AP PCKh@0.5

Input Res. Input Res.
256×192 384×288 256×256

BiSeNet [19] ResNet-18 68.4 71.4 87.3
BiSeNet + A ResNet-18 70.2 72.5 88.2
BiSeNet [19] ResNet-50 71.4 71.6 88.1
BiSeNet + A ResNet-50 73.7 74.0 89.7
Lite-HRNet [15] Lite-HRNet-18 64.8 67.6 86.1
Lite-HRNet + A Lite-HRNet-18 65.3 70.5 87.1
Lite-HRNet [15] Lite-HRNet-30 67.2 70.4 87.0
Lite-HRNet + A Lite-HRNet-30 68.0 71.7 88.3

Table 2. Evaluation results on COCO [17] val2017. FPS-D
and FPS-M denote Frames Per Second (inference speed) us-
ing a GeForce GTX 1080 Ti GPU and a Nvidia Jetson Xavier
computing board, respectively. Input resolution is 384×288.

Method FPS-D FPS-M AP AP50 AP75 AR
CPN [14] — — 70.6 — — —
CPNOHKM [14] — — 71.6 — — —
BiSeNet [19] 42.3 17.1 71.6 89.5 79.4 77.3
SB [6] 31.3 11.9 72.2 89.3 78.9 77.6
PPNet [9] 31.9 12.3 73.2 88.9 80.0 78.4
BiSeNet + A (ours) 37.7 13.4 74.0 90.0 81.3 79.2

In contrast, execution speed measured in the same machine
involves all the calculations that are required to produce the
final estimations.

BiSeNet [19] and Lite-HRNet [15] were separately adopted
as the fast stem network J . A comparison between their base-
line versions and their variants that have been architecturally
augmented with the proposed module is presented in Table
1, for both COCO val2017 and MPII validation sets. Results
for alternative backbones of different complexity are also re-
ported. Note that BiSeNet was adjusted for the 2D HPE task
by simply tasking it to predict body joint heatmaps instead of
segmentation maps.

The 2 CNNs that have been augmented with the proposed
module (J+A) outperform the corresponding baselines (J-
only) for all tested backbones in both datasets. This show-
cases that more accurate 2D human poses can indeed be pre-
dicted by splitting up the 2D HPE task between A and J and
facilitating information exchange between them through the
added neural connections.

The best performing variant of the proposed method
(ResNet-50-based BiSeNet + A) is then compared against
competing methods of similar complexity on the COCO
val2017 set in Table 2, for input image resolution of 384×288
pixels. Inference speed in FPS is measured for all avail-
able competing methods using both a high-end desktop PC
equipped with a GeForce GTX 1080 Ti GPU and an Nvidia

Table 3. Evaluation results on COCO [17] test-dev2017.
Method AP AP50 AP75 APM APL AR
OpenPose [20] 61.8 84.9 67.5 57.1 68.2 66.5
Assoc. Emb. [21] 65.5 86.8 72.3 60.6 72.6 70.2
PersonLab [22] 68.7 89.0 75.4 64.1 75.5 75.4
MultiPoseNet [23] 69.6 86.3 76.6 65.0 76.3 73.5
Mask-RCNN [24] 63.1 87.3 68.7 57.8 71.4 —
SB [6] 71.5 91.1 78.7 67.8 78.0 76.9
RMPE [25] 72.3 89.2 79.1 68.0 78.6 —
BiSeNet + A (ours) 73.3 92.1 81.3 70.0 79.0 78.6

Table 4. Evaluation results on the MPII [18] test set. Input
resolution is 256×256.
Method Head Should. Elb. Wrist Hip Knee Ank. Total
CPMs [26] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
SB [6] 98.2 96.4 91.0 86.0 90.4 86.3 82.3 90.5
HG [13] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
GLN [27] 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
SA-GCN [28] 97.1 96.1 91.5 86.8 90.7 87.6 84.3 91.1
BiSeNet + A (ours) 98.3 96.3 91.7 87.6 90.3 88.0 84.5 91.3

Jetson Xavier embedded AI computing board. As it can be
seen, the proposed architecture outperforms all competing
methods, while maintaining increased inference speed. It is
faster and more accurate than the best performing competing
methods SB and PPNet, while it is slower than the fastest
competitor BiSeNet only by 3.7-4.6 FPS, which is however
outperformed by the proposed method by a 2.4 AP score.
Furthermore, the 2D HPE accuracy of the proposed method
is evaluated on the COCO test-dev2017 set. Comparisons are
presented in Table 3 and indicate similar behaviour.

Comparisons against competitors in the MPII test set is
reported in Table 4. An input resolution of 256×256 pixels is
used in all cases for a fair comparison. As it can be seen, the
proposed method yielded increased 2D HPE accuracy com-
pared to all competitors.

5. CONCLUSIONS
This paper introduced a novel, collateral module A for aug-
menting any fast and lightweight 2D human pose estimation
CNN architecture J . A relies on Image-to-Image Transla-
tion in order to encode global body information and pass it
to J during inference through additional neural connections
placed between them. As a result, J is exempt from this sub-
task and focuses only on precisely localizing each body joint
on the 2D input image, thus ultimately achieving increased
2D human pose estimation accuracy. The overall architecture
is trained in a unified end-to-end manner, using a multitask
loss function. Importantly, A is specifically designed to only
add negligible computational cost during inference, so that
the fast execution properties of J are retained. Evaluation
on two public datasets shows that the proposed method not
only increases the accuracy of baseline CNNs, but also out-
performs all competing fast 2D human pose estimation meth-
ods.
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