Paper ID: 1884

Kernel interpolation of acoustic transfer functions with adaptive kernel for directed and residual reverberations

Background

- Sound wave propagation is unpredictable. \Rightarrow Physical phenomena such as reflection and d
- Acoustic transfer function (ATF): \Rightarrow Describes space's influence on sound waves
- **Region-to-region**: \Rightarrow Interpolate ATF continuously for source/receive
- Sound field analysis: \Rightarrow Deeply related problem we can draw solutions

Problem statement

Objective: interpolate ATF values from measuren

- ATF components $h(\mathbf{r}|\mathbf{s}) = h_{\mathrm{R}}(\mathbf{r}|\mathbf{s}) + h_{\mathrm{D}}(\mathbf{r}|\mathbf{s})$.
- Direct is known: $h_{\mathrm{D}}(\mathbf{r}|\mathbf{s},k) = \frac{e^{\mathrm{i}k\|\mathbf{r}-\mathbf{s}\|}}{4\pi\|\mathbf{r}-\mathbf{s}\|}.$
- Reverberant: $h_{\rm R}(\mathbf{r}|\mathbf{s},k)$ is more involved. \Rightarrow [Ribeiro+, 2020]: physical constraint in <u>kernel</u> regression with ATF kernel.
- \Rightarrow [Ribeiro+, 2022]: directionality improved perfor Generalized representation: Herglotz wave funct

$$\begin{split} h_{\mathrm{R}}(\mathbf{r}|\mathbf{s}) &= \mathcal{T}(\tilde{h}_{\mathrm{R}};\mathbf{r}|\mathbf{s}) \\ \hline \text{Plane wave} \\ \text{superposition} &\coloneqq = \int_{\mathbb{S}^2 \times \mathbb{S}^2} \mathrm{e}^{\mathrm{i}k(\hat{\mathbf{r}}\cdot\mathbf{r}+\hat{\mathbf{s}}\cdot\mathbf{s})} \tilde{h}_{\mathrm{R}}(\hat{\mathbf{r}},\hat{\mathbf{s}}) \mathrm{d}\hat{\mathbf{r}} \mathrm{d}\hat{\mathbf{s}} \end{split}$$

Representation that guarantees physics of the pr \Rightarrow Kernel function that learns weight function as o model.

$$\kappa(\mathbf{r}|\mathbf{s},\mathbf{r}'|\mathbf{s}') = \mathcal{T}\left(w(\hat{\mathbf{r}},\hat{\mathbf{s}})\frac{\mathrm{e}^{-\mathrm{i}k(\hat{\mathbf{r}}\cdot\mathbf{r}'+\hat{\mathbf{s}}\cdot\mathbf{s}')} + \mathrm{e}^{-\mathrm{i}k(\hat{\mathbf{r}}\cdot\mathbf{s}'+\hat{\mathbf{s}}\cdot\mathbf{r}')}}{2}\right)$$

Juliano G. C. Ribeiro¹, Shoichi Koyama², and Hiroshi Saruwatari¹ ¹The University of Tokyo, ²National Institute of Informatics

diffraction.	Previous kernels can be expressed [Ribeiro+, 2020]: kernel function equ ⇒ Satisfies basic physical propertie [Ribeiro+, 2022]: <u>sunken sphere</u> w ⇒ Introduces directionality to the est ⇒ Physical model limited, assumes gain on the sides. Data models for the weights are infl	equiva rties. <u>e</u> weig estimation
s from	 We propose an <u>adaptive kernel</u> the weight as a more general da 	
ments.	• Weighting represents directed a sum $w = w_{dir} + w_{res}$.	
	$\begin{split} & \underbrace{\text{Directed weight } \mathcal{W}_{\text{dir}}}_{\bullet} \\ & \bullet \text{ High amplitudes on sparse set of directions} \\ & \bullet \text{ Strong directionality.} \\ & \bullet \text{ Combination of von Mises-Fisher distributions.} \\ & w_{\text{dir}}(\hat{\mathbf{r}}, \hat{\mathbf{s}}) = \varphi_{\text{dir}}(\hat{\mathbf{r}})\varphi_{\text{dir}}(\hat{\mathbf{s}}), \\ & \varphi_{\text{dir}}(\hat{\mathbf{v}}) = \sum_{d=1}^{D} \alpha_d \frac{\mathrm{e}^{\beta_d \hat{\mathbf{v}} \cdot \hat{\mathbf{v}}_d}}{4\pi C(\beta_d)}, \end{split}$	Res • Lo di • Ur • Re w • In
ridge mance. tion.	$\ \boldsymbol{\alpha}\ _{1} = 1,$ $C(\beta_{d}) = \begin{cases} \frac{\sinh(\beta_{d})}{\beta_{d}}, & \beta_{d} \neq 0\\ 1, & \beta_{d} = 0 \end{cases}.$	
	 The resulting adaptive kernel will be the kernels. Kernel optimized as to minimize leave loss. 	
roblem. data $(') = ; \mathbf{r} \mathbf{s}$	 Model parameters β and θ optimized Parameter α optimized with reduced restrictions are upheld. The adaptive kernel learns particular without compromising model dynamic 	

ith Herglotz wave function. valent to a **uniform** weight.

ight function. nation. iform

ible. earns del.

thod

sidual reverberations as the

sidual weight $w_{\rm res}$

ow amplitude on a dense set of irections

npredictable behavior.

epresented by neural network vith parameters θ .

itegral operator approximated umerically.

the superposition of the

e-one-out cross validation

using gradient descent. gradient descent to guarantee

ties of the ATF in question CS.

- -Reverberation time: $T_{60} = 0.45$ s. -Radius of both regions: 0.2 m. -Centers of $\Omega_{S,R}$: $\pm [0.65, 0.8, 0.48]^T$.
- kernels.

Normalized mean square error (NMSE)

x (m)

NMSE = -13.1 dB

Experiments

Simulations with the image source method. -Room dimensions: $3.2 \text{ m} \times 4.0 \text{ m} \times 2.7 \text{ m}$. **Proposed** compared to **uniform** and **sunken sphere**

Reconstruction of ATF (1150Hz)

