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Contributions 3. Experimental Results

o This paper proposes a restoration method of time-varying Datasets I
graph signals utilizing graph spatiotemporal smoothness. . Sea Surface Temperature Dataset

« Our proposed network learns hyperparameters and filter N =100, k-NN (k = 5), T' = 216
coefficients thanks to Deep Algorithm Unrolling. « Synthetic Dataset

« Signal restoration accuracy improves in terms of RMSE. N =100, k.-NN (k = 5), T' = 600

Evaluation Measure

2. Proposed Method

Main Idea

« [Ime-varying graph signals are smooth on time and space.
« General Iterative method needs to determine
hyperparameters.
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Design of optimization problem + Unrolled iterations

1. Introduction Design of Optimization Problem lossrats = %;@n,t—xz,t)z
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Graph Signal Processing (GSP)!! argf’(mm 2H ) N 2 W Tikhgnov regularization!3
Signals often have their underlying structures Data tidelity Spatiotemporal smoothness of . ° L=

o Ol9 ying - » Sobolev smoothness (TRSS)[“ '

« GSP can consider the underlying structure of signals. L-steps graph signals . Unsupervised DAUS

« L-tap FIR filter captures long-

e.g. Transportation network, bioinformatics. form variations I . Graph temporal difference construction (OGTR)!€l
Time-varying graph signals | Sionals . Laplacian quadratic form G Restoration Result (SST dataset)
« A series of time-varying signals defined forces signal smoothness over b, - 1L ;—1 | egmxa-n
on a graph is called time-varying graph | -a0h 0
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Algorithm 1 Time-Varying Graph Signal Restoration with DAU Sampling Ratio Noise Level

Target Input: Y: Degraded signal

J: Binary operator defined in (2)
L: Graph Laplacian

Iterative Optimization Algorithm Deep Algorithm Unrolling

o« Parameters are learned Low sampling ratio

High restoration performance in

« DAU Is a method for learning the parameter(s) of the
Iterative algorithm using deep learning technigues.

» Original iterative algorithm (left) is unrolled as DAU
(right) and the parameter(s) of each layer are trained by
training data.

Our Purpose

Recover the original time-varying signal
from the observed signal

Y € RV*T) . Opserved time-varying graph signal

Y - J O (X* —+ V) J € {0,1}%*T) : Sampling operator

L 1 X* ¢ RWVXT) . (Unknown) original time-varying graph signal
Proposed | | V € RVXT) . Noise term
Method Estimation N : # Nodes
1T : # Times
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through supervised learning
thanks to DAU.
« Each network layer can use

K: Number of layers
©={eW | ©(F)1: Trainable parameters
Output: X (k) Restored signals

for k =1to K do

1) Stepsize decision

g(AX(k_l) ,VX(k_l))
g(AX(k=1) vx(k=1) 1v)
2) Search direction update

X)) — x(*k-1) 4 fAX (-1
lvx®@1f,

7T exGD

AX® = _vxX® L yAX =D
end for
3) Updating trainable parameter ®

Its own parameters.
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Improvement of accuracy
and convergence speed

T=—

AX®) = _yxX®) 4 yAXF-D)
k k)T
VXH® =JoX® Y 4 oWLXEDF DY
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High noise level

Consideration of Trained Parameters
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Extensive use of past signals

—Captures global characteristics
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4. Conclusion

« Our proposed method improves the accuracy of restoring
time-varying graph signals compared to conventional
restoration methods



