Angular Central Gaussian and Watson mixture models for assessing

dynamic functional brain connectivity during a motor task
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Sign-symmetric spherical distributions
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A € RP*P |s a positive definite matrix identifiable up to multiplication

with a positive scalar (spherical covariance matrix).
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"‘\/e\’\/v\/‘m’\"\/\f K e A voxels). 29 participants, block-design finger-tapping motor task [5].
Phase serics N W= » Schaefer-100 atlas for spatial downsampling [6].
1} WC S  Split-half cross-validation for model performance investigations.
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AR B L f; - R e'ffi.—_,.;...?\‘\'_,ss'a“ rixtare 2 17 PYTEYTY ACCMM K1 bottom (blue) 2.5% edges and connectivity map for the ACG MM fit for K = 4, where
= o |EEN " _:[_E ACG.HMM 5ol — = ACG-MM: K=4 node size is the diagonal of A.
— F ] , r o 087 —F— Watson-MM Y [ ACG-MM: K=10
| L] = I= ——F— Watson-HMM ACG-HMM: K=1
= P~ 7 L L = 0.6} = 5.4} = = = ACG-HMM: K=4
1 __:3—' CTosle—1 11 | —LL > _E " 2 VU SRR ACG-HMM: K=10
.- e Ry E 3
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a _ . ] _ _ (A): Noise-dependent information overlap between two-component fit state . Likewise. the models debloved on restina-state data or more
Gaussian (ACG) mixture. (C): Two-component Watson and ACG mixture model fits on probabilities (for MMs) or state sequence (for HMMs) with the true cluster identity. i ! d task pl y ins 'ng e brai
the synthetic data in (B). (B): Test negative log-likelihood depending on ACG rank for three model orders. complicated tasks may reveal novel information on the brain.
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