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Results (cont’d)Sign-symmetric spherical distributionsSummary

• Leading eigenvector dynamics analysis (LEiDA) [1] is among the

favored methods for assessing instantaneous dynamic functional

brain connectivity.

• Eigenvectors, e.g., those produced by LEiDA, are distributed on the

sign-symmetric unit hypersphere, which is typically disregarded

during modeling [2].

• Here we develop mixture model (MM) and Hidden Markov model

(HMM) formulations for two sign-symmetric spherical distributions.

• We display their performance on synthetic data and functional

magnetic resonance imaging (fMRI) data involving a finger-tapping

task.

Methods

• Watson distribution density [3]:
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, 𝒙 ∈ 𝕊𝑝−1,

𝑀(𝑎, 𝑏, 𝜅) is Kummer’s confluent hypergeometric function, and Γ(⋅) is

the Gamma function. The density is parameterized by a mean sign-

symmetric direction 𝝁 and scalar precision parameter 𝜅.

• Angular central gaussian distribution density [4]:
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𝚲 ∈ ℝ𝑝×𝑝 is a positive definite matrix identifiable up to multiplication

with a positive scalar (spherical covariance matrix).

Results

Data and implementation

• 3T fMRI data (TR/TE 2490/30 ms, 240 volumes, 3mm isotropic

voxels). 29 participants, block-design finger-tapping motor task [5].

• Schaefer-100 atlas for spatial downsampling [6].

• Split-half cross-validation for model performance investigations.

• Mixtures and HMMs implemented in PyTorch with the ADAM optimizer

(lr=0.1). Constraints were handled by reparametrization, e.g., 𝝁 =

𝝁/ 𝝁 and 𝜅 = log(1 + 𝑒𝜅) while optimizing 𝝁 and ǁ𝜅 unconstrained.

• Two ACG estimation schemes. For low-dimensional problems, 𝚲−1 =
𝑳𝑳𝑇. For high-dimensional problems, 𝚲 = 𝑴𝑴𝑇 + 𝑰, where 𝑴 ∈ ℝ𝑝×𝑟is

of rank 𝑟.

Methodological pipeline. (A): LEiDA constructs leading eigenvectors of instantaneous

phase coherence maps estimated using the Hilbert transform. (B): Synthetic data on

the sign-symmetric unit hypersphere generated by a two-component angular central

Gaussian (ACG) mixture. (C): Two-component Watson and ACG mixture model fits on

the synthetic data in (B).

(A): Noise-dependent information overlap between two-component fit state

probabilities (for MMs) or state sequence (for HMMs) with the true cluster identity.

(B): Test negative log-likelihood depending on ACG rank for three model orders.

Model fits to experimental data. (A): Evolution of test performance over model order.

(B): Watson MM fit for 𝐾 = 4 including connectivity map 𝚲 = 𝜅𝝁𝝁⊤ and a surface

rendering of the diagonal of 𝚲. (C): Brain graph rendering showing the top (red) and

bottom (blue) 2.5% edges and connectivity map for the ACG MM fit for 𝐾 = 4, where

node size is the diagonal of 𝚲.
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Discussion

• HMMs are more affected by noise than their corresponding MM

formulations. Similarly, the ACG can be difficult to estimate for high 𝑝.

• Future studies could investigate the distribution of ACG rank indicating

an optimal LEiDA-determined brain complexity level. Similarly, the

HMM overlap with task information may be investigated.

• Likewise, the models deployed on resting-state data or more

complicated tasks may reveal novel information on the brain.
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