#### **Yassine El Ouahidi**

Lucas Drumetz Giulia Lioi Nicolas Farrugia Bastien Pasdeloup Vincent Gripon



Spatial Graph Signal Interpolation with an application for Merging BCI Datasets with various Dimensionalities

# ICASSP 2023

# Context - Brain Computer Interface (BCI)



#### ElectroEncephaloGraphy (EEG)



IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom 08/06/20

# Context - Brain Computer Interface (BCI)





Atlantique ne-Pays de la Loire Mines-Télécom 08/06/

# Context - Brain Computer Interface (BCI)



Challenges:

- Lack of big datasets.
- Small dataset with different recording setups.
   Electrodes layout, sampling frequency, filters, ...





However unifying the spatial aspect of the EEG setups remains a challenge.





However unifying the spatial aspect of the EEG setups remains a challenge.



Few approaches have been proposed to unify the spatial aspect of the EEG setups.

- Reduce the spatial dimension:
  - Keeping the intersection
  - Dimension reduction methods (ex : PCA)



However unifying the spatial aspect of the EEG setups remains a challenge.



Few approaches have been proposed to unify the spatial aspect of the EEG setups.

- Reduce the spatial dimension:
  - Keeping the intersection
  - Dimension reduction methods (ex : PCA)

- Increase the spatial dimension
  - Riemannian geometry



However unifying the spatial aspect of the EEG setups remains a challenge.



Few approaches have been proposed to unify the spatial aspect of the EEG setups.

- Reduce the spatial dimension:
  - Keeping the intersection
  - Dimension reduction methods (ex : PCA)

- Increase the spatial dimension
  - Riemannian geometry

No information loss



08/06/20

# Context - Electrodes / Graph interpolation

Interpolating electrodes has been mainly used to recover signal from noisy electrodes

Mainly using is Spherical Spline [1]







[1] François Perrin, Jacques Pernier, O Bertrand, and Jean Francois Echallier, "Spherical splines for scalp potential and current density mapping," *Electroencephalography and clinical neurophysiology*, vo 72, no. 2, pp. 184–187, 1989

# Scientific challenges

Our proposition: Interpolating spatial EEG using Graph Signal Processing



signal amplitude



# Scientific challenges

Our proposition : Interpolating spatial EEG using Graph Signal Processing



signal amplitude

Research questions:

- 1) How to use GSP to interpolate electrodes?
  - Which graph?
  - Which interpolation criterion
- 2) Does unifying multiple EEG datasets with interpolation improve brain decoding?



Few definitions:





IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom 08/06/2

Few definitions:



With D and W, the Degree and weights matrix of G, we have  $\mathbf{L} = D-W$ , with L the Laplacian

Smoothness of the signal over the graph is defined by:

$$\sigma(\mathbf{s}) = \mathbf{s}^{\top} \mathbf{L} \mathbf{s} = \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} W_{ij}(s_i - s_j)^2$$





Smoothness of the signal over the graph is defined by :

$$\sigma(\mathbf{s}) = \mathbf{s}^{\top} \mathbf{L} \mathbf{s} = \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} W_{ij} (s_i - s_j)^2$$



#### 1 How to find $\mathbf{s}_{\mathcal{M}}$ ?

Interpolation criterion : **smoothness** 

Minimizing 
$$\sigma(\mathbf{s}) = \mathbf{s}^{\top} \mathbf{L} \mathbf{s} = \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} W_{ij} (s_i - s_j)^2$$

We found a closed form of  $\sigma(\mathbf{s})$  that provides the optimal  $\mathbf{s}_{\mathcal{M}}$ 

(A) 
$$\mathbf{s}_{\mathcal{M}} = -\mathbf{L}_{\mathcal{M}}^{-1}\mathbf{L}_{\mathcal{M}}\overline{\mathcal{M}}\mathbf{s}_{\overline{\mathcal{M}}}$$





#### How to found $s_{\mathcal{M}}$ ?

Interpolation criterion : **smoothness** 

Minimizing 
$$\sigma(\mathbf{s}) = \mathbf{s}^{\top} \mathbf{L} \mathbf{s} = \sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{|\mathcal{V}|} W_{ij} (s_i - s_j)^2$$

We found a closed form of  $\sigma(s)$  that provides the optimal  $s_M$ 

(A) 
$$\mathbf{s}_{\mathcal{M}} = -\mathbf{L}_{\mathcal{M}}^{-1}\mathbf{L}_{\mathcal{M}}\overline{\mathcal{M}}\mathbf{s}_{\overline{\mathcal{M}}}$$

 $^{2}$  How to build G?

We learn G, from real data using gradient descent.

- 1) Initialize a connected graph G
- 2) Create virtual reconstruction problems
- 3) Reconstruct the signal using (Å)
- 4) Update G based on the error of reconstruction
- 5) Repeat 2) to 4) until the error is low







#### What is the added value brought by interpolated data?

Does unifying multiple EEG datasets with interpolation improve brain decoding?

We experiment brain decoding on the following realistic setup:





## Results





```
ays de la Loire
s-Télécom 08/06/
```

#### Classification accuracy

|         | Zhou              |          |  |
|---------|-------------------|----------|--|
|         | Acc               | Ν        |  |
| $\cap$  | <u>61.2 ± 2.0</u> | <u>9</u> |  |
| Dataset | 56.2 ± 4.8        | 14       |  |
| U       | $46.4 \pm 2.8$    | 66       |  |



## Results





Atlantique Igne-Pays de la Loire e Mines-Télécom 08/06

#### Classification accuracy

|         | Shin              |           | Zhou              |          |
|---------|-------------------|-----------|-------------------|----------|
|         | Acc               | Ν         | Acc               | N        |
| $\cap$  | 53.2 ± 2.8        | 2         | <u>61.2 ± 2.0</u> | <u>9</u> |
| Dataset | <u>63.2 ± 2.3</u> | <u>22</u> | 56.2 ± 4.8        | 14       |
| U       | 62.3 ± 2.1        | 76        | $46.4 \pm 2.8$    | 66       |



#### Conclusions

- New and efficient electrode interpolation technique exploiting GSP tools
- Illustrated the interest of our method to homogenize datasets
  - Our code is open
  - Many more details in our paper!



