

Phonation Mode Detection in Singing: A Singer Adapted Model

Fixed length audio of a steady vowel

- 1. We introduce a novel **PMD** problem and create a **multiphonation singing dataset** for this task.
- 2. We present an Encoder-Decoder model **P-Net** to predict phonation mode labels and the boundary timestamps.
- 3. We propose the **AP-Net**, an improved version of P-Net, to perform PMD on unseen singers without phonation mode labels.

We release our PMD dataset and implementation:

Yixin Wang^{*}⁺, Wei Wei⁺, Ye Wang⁺

(b) Test stage

Phonation Modes Dataset					
Singer ID	Total duration (hours:minutes:seconds)	# of songs	# of utterances	# of phonation modes in each utterance	Duration of each phonation mode (s)
DM	0:38:27	16	470	$1 \sim 11 \ (4)$	0.01 ~ 6.89 (0.86)
MM	0:13:26	7	148	$1 \sim 14 \ (5)$	$0.02 \sim 4.67 \ (0.71)$
SF	0:11:32	7	112	1~9(5)	$0.05 \sim 4.72 \ (1.02)$
VF	0:27:10	12	360	$1 \sim 12 (5)$	$0.02 \sim 4.06 \ (0.71)$
Total	1:30:35	42	990	$1 \sim 14 \ (5)$	0.01 ~ 6.89 (0.83)

Existing phonation mode datasets are only suitable for PMC but not for PMD. The proposed dataset contains a longer duration and multiple phonation modes.

Model

VD-RANN

Smoothing-CRN

P-Net (ours)

Table 2. Experiment results for P-Net

and efficiency.

Model

VD-RANN

Smoothing-CRNN

P-Net (ours)

AP-Net (ours)

• AP-Net surpasses the non-adapted model on target singer without label.

Class name	P-N	Vet	AP-Net	
	Source	Target	Source	Target
breathy	67.91	6.45	54.19	62.46
neutral	65.52	42.50	74.49	57.43
pressed	86.57	18.18	71.64	60.08

• AP-Net improves the class-wise results on both the source and target singer.

Journal of New Music Research. in singing, ISMIR 2016.

⁺ work performed during visiting at NUS

Results

	F-score	Error rate	Training time per epoch (s)
	0.645	0.37	434
NN	0.539	0.68	14
	0.680	0.47	9

P-Net outperforms the baselines with improved performance

	Source singer		Target Singer		
	F-score	Error rate	F-score	Error rate	
	0.645	0.37	0.523	0.49	
N	0.539	0.68	0.320	0.74	
	0.680	0.47	0.289	0.75	
	0.668	0.45	0.658	0.46	

 Table 3. Experiment results for AP-Net

Table 4. Class-wise F-score on the source and target singer

References

[1] P. Proutskova et al., Breathy, resonant, pressed – automatic detection of phonation mode from audio recordings of singing,

[2] D. Stoller et al., Analysis and classification of phonation modes

[3] J. Rouas et al., Automatic classification of phonation modes in singing voice: Towards singing style characterisation and application to ethnomusicological recordings, Interspeech 2016.

[4] X. Sun et al., Residual attention based network for automatic classification of phonation modes, ICME 2020.