Exploiting PRNU and Linear Patterns in Forensics Camera Attribution Under Complex Lens Distortion Correction

Andrea Montibeller and Fernando Pérez-González

atlanTTic UniversidadeVigo

Outline

- Camera Attribution
- Camera Attribution of Radial Corrected Images
- In and Out Camera Radial Correction
- State of The Art
- Complementarity
- Proposed Solutions
- Experimental Results
- Conclusions

Camera Attribution

CAMERA Fingerprint

Camera Attribution of Radial Corrected Images

Fingerprint

$[x', y'] = [x, y] \cdot (1 + \alpha(x^2 + y^2))$

Radial Corrected Image

PRNU extraction

NOPE

PRNU

In and Out-Camera Radial Correction

In-Camera Radial Correction

Out-Camera Radial Correction

State of the Art: Sensor-fingerprint based identification of images corrected for lens distortion

[9] Goljan, Miroslav, and Jessica Fridrich. "Sensor-fingerprint based identification of images corrected for lens distortion." Media Watermarking, Security, and Forensics 2012. Vol. 8303. Spie, 2012.

State of the Art: Sensor-Fingerprint based identification of images corrected for lens distortion

[9] Goljan, Miroslav, and Jessica Fridrich. "Sensor-fingerprint based identification of images corrected for lens distortion." Media Watermarking, Security, and Forensics 2012. Vol. 8303. Spie, 2012.

State of the Art: Estimation of lens distortion correction from single images

[10] Goljan, Miroslav, and Jessica Fridrich. "Estimation of lens distortion correction from single images." Media Watermarking, Security, and Forensics 2014. Vol. 9028. SPIE, 2014.

State of the Art: Estimation of lens distortion correction from single images

$$r = G_{\alpha}^{-1}(r') = r' \left(1 + \alpha_1 r'^2 + \alpha_2^2 r'^4 \right)$$

$$\mathscr{A}_1 = \{0:$$

 $\alpha_1^* = \arg B$
 $E = En$

[10] Goljan, Miroslav, and Jessica Fridrich. "Estimation of lens distortion correction from single images." Media Watermarking, Security, and Forensics 2014. Vol. 9028. SPIE, 2014.

PRNU К

using this radial correction model:

Complementarity

Proposed Solutions: MAX

Proposed Solutions: OR

Proposed Solutions: PSLR

PCE-guided coarse parameter Search plus Linear Patterns-based Refinement

Experimental Results: ROC

Experimental Results: TPR@FPR0.05

	GIMP [3456x5184]	LIGHTROOM [3456x5184]	LIGHTROOM* [3456x5184]	PHOTOSHOP [3456x5184]	PT-LENS [3456x5184]	S9100 [3000x4000]	SX210 [3240x4320]	SX230 [1584x2816]	SX40 [2664x4000]	ZS [1920x
[9]	0.96	0.44	0.41	0.91	0.64	0.97	0.98	0.82	0.98	0.7
[9] no DS	0.97	0.6	0.51	0.96	0.91	1	1	0.98	1	0.9
[10]	0.96	0.35	0.55	0.88	0.36	0.92	0.93	0.76	0.7	0.6

Experimental Results: TPR@FPR0.05

	GIMP [3456x5184]	LIGHTROOM [3456x5184]	LIGHTROOM* [3456x5184]	PHOTOSHOP [3456x5184]	PT-LENS [3456x5184]	S9100 [3000x4000]	SX210 [3240x4320]	SX230 [1584x2816]	SX40 [2664x4000]	ZS [1920x
[9]	0.96	0.44	0.41	0.91	0.64	0.97	0.98	0.82	0.98	0.7
[9] no DS	0.97	0.6	0.51	0.96	0.91	1	1	0.98	1	0.9
[10]	0.96	0.35	0.55	0.88	0.36	0.92	0.93	0.76	0.7	0.6
MAX par	0.97	0.68	0.75	0.93	0.83	0.99	1	0.88	1	0.8
OR	0.96	0.67	0.74	0.93	0.83	0.99	1	0.88	1	0.8

Experimental Results: TPR@FPR0.05

	GIMP [3456x5184]	LIGHTROOM [3456x5184]	LIGHTROOM* [3456x5184]	PHOTOSHOP [3456x5184]	PT-LENS [3456x5184]	S9100 [3000x4000]	SX210 [3240x4320]	SX230 [1584x2816]	SX40 [2664x4000]	ZS [1920x2	
[9]	0.96	0.44	0.41	0.91	0.64	0.97	0.98	0.82	0.98	0.7	
[9] no DS	0.97	0.6	0.51	0.96	0.91	1	1	0.98	1	0.9	
[10]	0.96	0.35	0.55	0.88	0.36	0.92	0.93	0.76	0.7	0.6	
MAX par	0.97	0.68	0.75	0.93	0.83	0.99	1	0.88	1	0.8	
OR	0.96	0.67	0.74	0.93	0.83	0.99	1	0.88	1	0.8	
PSLR	0.98	0.75	0.71	0.96	0.9	0.96	1	0.98	1	0.9	

Experimental Results: Computational Cost x Images [seconds]

	GIMP [3456x5184]	LIGHTROOM [3456x5184]	LIGHTROOM* [3456x5184]	PHOTOSHOP [3456x5184]	PT-LENS [3456x5184]	S9100 [3000x4000]	SX210 [3240x4320]	SX230 [1584x2816]	SX40 [2664x4000]	Z [19202
[9]	85.3	87.9	91.6	107.2	100.3	81.7	81.3	25.1	56.3	27
[9] fast	962.3	930.8	930.9	947.6	918.3	598.3	723.4	229	526.3	25
[10]	861.7	849.8	808.7	731.7	847.1	553.5	661.1	205.2	472.9	22
MAX par	861.7	849.8	808.7	731.7	847.1	553.5	661.1	205.2	472.9	22
MAX seq	947	937.3	900.3	839.9	947.4	635.2	742.4	230.2	529.2	2
OR	96.4	548.1	553.8	171.6	402.4	95.8	93.2	60.3	67.2	70
PSLR	197.1	308.6	284.2	162.2	140.3	80.7	234.1	147.2	125.4	51
PSLR CPU	667.76	932.29	962.46	576.83	474.04	197.75	621.83	363.18	287.46	151

Experimental Results: ALL

	$\begin{array}{c} \text{GIMP} \\ 3456 \times 5184 \end{array}$		GIMP LIGHTROOM		LIGHTROOM* PHOTOSHOP		PT LENS S9100		SX210		SX230		SX40		ZS					
			3456	$\times 5184$	3456×5184		3456×5184		3456×5184		3000 imes 4000		3240×4320		1584×2816		2664×4000		1920) ×
	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	time [s]	TPR	ti
[9] $(\tau = 4.81)$	0.96	85.3	0.44	87.9	0.41	91.6	0.91	107.2	0.64	100.3	0.97	81.7	0.98	81.3	0.82	25.1	0.98	56.3	0.79	
[9] no DS ($\tau = 7.65$)	0.97	962.3	0.6	930.8	0.51	930.9	0.96	947.6	0.91	918.3	1	598.3	1	723.4	0.98	229.0	1	526.3	0.98	1
[10] $(\tau = 2.83)$	0.96	861.7	0.35	849.8	0.55	808.7	0.88	731.7	0.36	847.1	0.92	553.5	0.93	661.1	0.76	205.2	0.70	472.9	0.65	
MAXpar ($\tau = 5.28$)	0.97	861.7	0.68	849.8	0.75	808.7	0.93	731.7	0.83	847.1	0.99	553.5	1	661.1	0.88	205.2	1	472.9	0.87	
MAXseq ($\tau = 5.28$)	0.97	947	0.68	937.3	0.75	900.3	0.93	838.9	0.83	947.4	0.99	635.2	1	742.4	0.88	230.3	1	529.2	0.87	
OR ($\tau = 5.28$)	0.96	96.4	0.67	548.1	0.74	553.8	0.93	171.6	0.83	402.4	0.99	95.8	1	93.2	0.88	60.3	1	67.2	0.86	
PSLR ($\tau = 5.83$)	0.98	197.1	0.75	308.6	0.71	284.2	0.96	162.2	0.9	140.3	0.96	80.72	1	234.1	0.98	147.2	1	125.4	0.95	
PSLR CPU ($\tau = 5.83$)	0.98	667.76	0.75	932.29	0.71	962.46	0.96	576.83	0.9	474.04	0.96	197.75	1	621.83	0.98	363.18	1	287.46	0.95	1

[9] Goljan, Miroslav, and Jessica Fridrich. "Sensor-fingerprint based identification of images corrected for lens distortion." Media Watermarking, Security, and Forensics 2012. Vol. 8303. Spie, 2012. [10] Goljan, Miroslav, and Jessica Fridrich. "Estimation of lens distortion correction from single images." Media Watermarking, Security, and Forensics 2014. Vol. 9028. SPIE, 2014.

Table 1: TPR and average execution time of [9], [10] and our proposed schemes, for different subsets.

Conclusions

- Combining PRNU-aided and Linear Patterns-aided method help improving in terms of accuracy
- GPU-accelaration allows to further optimize mathematical complex problems
- Adaptive and Variable Radial Corrections remain a problem
- Further optimizations, other than GPU acceleration, have to be implementated

Questions?

- Combining PRNU-aided and Linear Patterns-aided method help improving in terms of accuracy
- GPU-accelaration allows to further optimize mathematical complex problems
- Adaptive and Variable Radial Corrections remain a problem
- Further optimizations, other than GPU acceleration, have to be implementated