

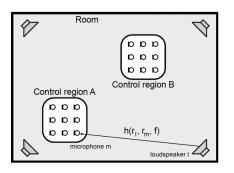
/nnovation Fund Denmark

Robust FIR Filters for Wireless Low-Frequency Sound Zones

 $\begin{array}{ccc} & \mbox{Mo Zhou}^{\ast} & \mbox{Martin Bo Møller}^{\dagger} \\ \mbox{Christian Sejer Pedersen}^{\ast} & \mbox{Jan Østergaard}^{\ast} \end{array}$

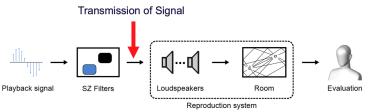
*Aalborg University, Aalborg, Denmark †Bang & Olufsen, Struer, Denmark

2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023) 4-10 June, Rhodes Island,Greece


This work is partly funded by the Innovation Fund Denmark IFD) under File No. 9069-00038B in the project: Interactive Sound

Outline

- Introduction of Sound Zone Systems
- Model with Packet Loss
- Filter Derivation
- Simulation
 - Simulation Setting
 - Contrast
 - Sound Quality
- Discussion


▶ < ∃ >

Sound Zone

- Bright zone: where the sound is desired
- Dark zones: where the sound is suppressed
- Different control strategies are usually considered in different frequency ranges
- we focus on the creation of sound zones at low frequencies

Sound Zone Systems

- Cable: high speed, robustness
- Wireless:
 - portability, increased flexibility, lower installation costs
 - bit errors and loss of packets

Effect of Packet Loss on Sound Zones

- Lower contrast
- Lower audio quality
- More leakage to the dark zone

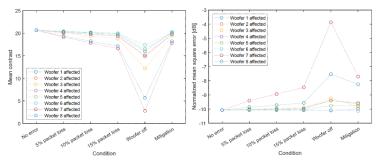


Figure: Contrast and normalized mean square error for 10s gaussian white noise depending on error and affected woofers.¹

¹C. S. Pedersen, M. B. Møller, and J. Østergaard, "Effect of wireless transmission errors on sound zone performance at low frequencies," EUROREGIO BNAM2022 Joint Acoustic Conference, pp. 115–124, May 2022.

Preliminaries

• The sound pressure at time *n* recorded by microphone *m* due to loudspeaker *l*:

$$p_{m,l}(n) = \sum_{j=0}^{J-1} h_{m,l}(j) \sum_{i=0}^{J-1} w_l(i) x_s(n-i-j), \qquad (1)$$

- x_s is the input audio signal,
- $h_{m,l} = (h_{m,l}(0), ..., h_{m,l}(J-1))^T$ is the room impulse response (RIR), • $w_l = (w_l(0), ..., w_l(l-1))^T$ is the FIR filters.
- Assume the source signal x_s to be spectrally flat:

$$\boldsymbol{p}_{m,l} = \boldsymbol{H}_{m,l} \boldsymbol{w}_l, \qquad (2)$$

•
$$H_{m,l} \in \mathbb{R}^{(l+J-1) \times l}$$
 is a Toeplitz matrix.

Model with Packet Loss

• Assume the packet size is 1 and packet loss in each channel *l* is independent:

$$P(\delta_I(t)=0)=p_I, P(\delta_I(t)=1)=1-p_I,$$

where $\delta_l(t)$ is the observation of whether a packet is lost.

• Sound Pressure under packet loss can be written as:

$$oldsymbol{p}_{m,l} = oldsymbol{H}_{m,l} \mathsf{diag}(oldsymbol{\delta}_l) oldsymbol{w}_l,$$

where $\delta_{I} = (\delta_{I}(0), ..., \delta_{I}(I-1))^{T}$.

• For *M* microphone positions:

$$\boldsymbol{\rho} = \boldsymbol{H} \Delta \boldsymbol{w}, \tag{3}$$

where

$$\boldsymbol{H} = (\boldsymbol{H}_{1}^{T}, ..., \boldsymbol{H}_{M}^{T})^{T} \text{ with } \boldsymbol{H}_{m} = (\boldsymbol{H}_{m,1}, ..., \boldsymbol{H}_{m,L}),$$

$$\boldsymbol{\delta} = (\boldsymbol{\delta}_{1}^{T}, ..., \boldsymbol{\delta}_{L}^{T})^{T}, \boldsymbol{w} = (\boldsymbol{w}_{1}^{T}, ..., \boldsymbol{w}_{L}^{T})^{T}, \boldsymbol{\Delta} = \text{diag}(\boldsymbol{\delta}).$$

Cost Function

• Sound Pressure in the bright zone and dark zone:

$$\boldsymbol{p}_B = \boldsymbol{H}_B \Delta \boldsymbol{w}, \quad \boldsymbol{p}_D = \boldsymbol{H}_D \Delta \boldsymbol{w}.$$
 (4)

• We will use the following cost function:

$$J_{pl}(\boldsymbol{w}) = (1-\beta)\mathbb{E}\{\|\boldsymbol{p}_B - \boldsymbol{p}_T\|_2^2\} + \beta\mathbb{E}\{\|\boldsymbol{p}_D\|_2^2\} + \lambda_w \boldsymbol{w}^T \boldsymbol{R}_w \boldsymbol{w}, \quad (5)$$

- ▶ **p**_T is the target sound pressure in the bright zone
- R_w is a weighting matrix for controlling the shape of the FIR filters
- The expectation $\mathbb{E}(\cdot)$ is with respect to the packet loss Δ .

Filter Derivation

• The FIR filters \boldsymbol{w} can be estimated by minimizing (5):

$$\boldsymbol{w}_{opt} = [(1-\beta)\mathbb{E}(\Delta \boldsymbol{H}_{B}^{T}\boldsymbol{H}_{B}\Delta) + \beta\mathbb{E}(\Delta \boldsymbol{H}_{D}^{T}\boldsymbol{H}_{D}\Delta) +\lambda_{w}\boldsymbol{R}_{w}]^{-1}(1-\beta)\mathbb{E}(\Delta)\boldsymbol{H}_{B}^{T}\boldsymbol{p}_{T}.$$
$$= [(1-\beta)\boldsymbol{H}_{B}^{T}\boldsymbol{H}_{B}\odot\Omega + \beta\boldsymbol{H}_{D}^{T}\boldsymbol{H}_{D}\odot\Omega +\lambda_{w}\boldsymbol{R}_{w}]^{-1}(1-\beta)(\Psi\otimes\boldsymbol{I}_{I})\boldsymbol{H}_{B}^{T}\boldsymbol{p}_{T}.$$
(6)

where

•
$$\mathbb{E}(\Delta) = \Psi \otimes I_l$$
, where I_l is an *l*-by-*l* identity matrix and $\Psi = \text{diag}(1 - p_1, ..., 1 - p_L)$, \otimes denotes Kronecker product, and

$$\Omega = \begin{pmatrix} (1-p_1)^2 \Omega_1 & \cdots & (1-p_1)(1-p_L) \mathbf{1}_l \\ (1-p_1)(1-p_2) \mathbf{1}_l & \cdots & (1-p_2)(1-p_L) \mathbf{1}_l \\ \vdots & \ddots & \vdots \\ (1-p_1)(1-p_L) \mathbf{1}_l & \cdots & (1-p_L)^2 \Omega_L \end{pmatrix}$$

э

٠

<日

<</p>

Simulation Setting

- simulate a 5.5 m by 8.65 m by 2.7 m room using Green's function for point sources in rectangular rooms, with 0.6s T_{60} reverberation time and L = 8 loudspeakers.
- The number of microphone positions sampled in the bright and dark zones are $M_B = M_D = 75$.

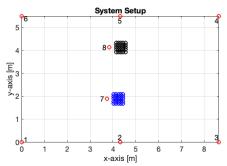
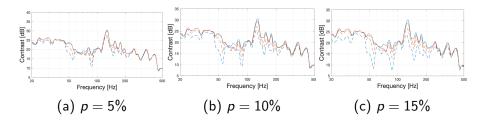


Figure: The blue and black circles are the microphones in the bright zone and dark zone respectively. The red circles are the loudspeakers.

Simulation Setting

- focus cases where only one channel is subject to packet loss,
- ω_{i,p}, i = 1, ..., 8: proposed filters derived by assuming Channel i has packet loss rate p, where p = 5%, 10%, 15%,
- ω_{old} : original filters derived without packet loss,
- The RIRs and the filters are of length J = 600 and I = 300,

•
$$\beta = 0.97$$
 and $\lambda_w = 10^{-7}$


• Input signal: 10s signal sampled at 1200 Hz, encoded into consecutive and non-overlapping blocks, each consists of 24 samples (20 ms).

Smoothed Contrast

- Input signal: Gaussian white noise
- Smoothed Contrast:

$$SC(\omega) = 10 \times \log_{10} \left(\frac{S(\sum_{m=1}^{M} (\sum_{l=1}^{L} \tilde{\hat{p}}_{B,m,l}(\omega))^2 / M_B)}{S(\sum_{m=1}^{M} (\sum_{l=1}^{L} \tilde{\hat{p}}_{D,m,l}(\omega))^2) / M_D} \right),$$

where $\hat{\hat{p}}_{B,m,l}, \hat{\hat{p}}_{D,m,l}$ are the Fourier transform of $\hat{p}_{B,m,l}, \hat{p}_{D,m,l}$ respectively, and $S(\cdot)$ is the smoothing function.

Mean Contrast

- Input signal: Gaussian white noise
- The Mean Contrast is defined as

$$MC = \frac{1}{N} \sum_{n=1}^{N} C_T(n),$$

where

$$C_{T}(n) = 10 \times \log_{10} \left(\frac{\sum_{m=1}^{M} (\sum_{l=1}^{L} \hat{p}_{B,m,l}(n))^{2}}{\sum_{m=1}^{M} (\sum_{l=1}^{L} \hat{p}_{D,m,l}(n))^{2}} \right).$$

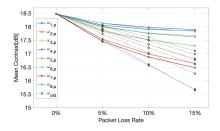


Figure: Mean Contrast for ω_{old} and $\omega_{i,p}$ under different packet loss rates.

Mo Zhou * Martin Bo Møller † Christian Robust FIR Filters for Wireless Low-Frequenc

Sound Quality in Bright Zone

- Input signal: 10-second segment of *Dazed and Confused* from the Album "Led Zeppelin" .
- We use the Perceptual Evaluation of Audio Quality (PEAQ) model to predict sound quality in the bright zone.

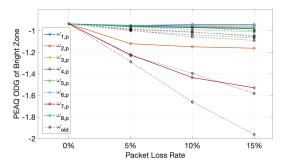


Figure: PEAQ ODG of bright zone for ω_{old} and $\omega_{i,p}$ under different packet loss rates.

Sound Quality Reduction due to Leakage

- We evaluate the sound quality reduction of listening to the audio when exposed to leakage as well as the intended audio.
- Assume that we have two zones (Zone A and Zone B), we reproduces audio signal A in Zone A and seeks to reduce the leakage towards Zone B. Zone B has a loudspeaker reproducing audio signal B for Zone B.
- We then evaluate how a person in Zone B experiences the quality of listening to the combination of the reproduced audio signal B and the leaked audio from Zone A under different packet loss patterns.

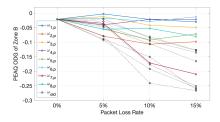


Figure: PEAQ ODG of Zone B for ω_{old} and $\omega_{i,p}$ under different packet loss rates.

Discussion

- Incorporating packet loss information can improve the performance of the wireless low-frequency sound zone system. With packet loss rate increases, the improvement is more significant,
- Our proposed filters not only improves the overall contrast when packet losses occur, but also has comparable performance when evaluated with no packet loss,
- Future investigation: incorporating bursty packet loss, cases when all channels have packet loss.

Thank you!

æ

<ロト <問ト < 目ト < 目ト