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I. MAXIMUM LIKELIHOOD DERIVATION

A. Poisson-Noise Modeling

Let us denote the observed noisy image as y and the ground-
truth noise-free image as x. Then, the Poisson-Gaussian model
takes the form of the following equation

y =
1

a
α+ β, α ∼ P(ax), β ∼ N (0, b2). (1)

Using the linearity property of expectation, we can compute
the expected value

E[y] =
1

a
E[α] =

1

a
ax = x. (2)

Further, the variance has the following expression

V[y] = E

[(
1

a
α+ β

)2
]
− x2 =

1

a2
E[α2] + b2 − x2. (3)

Given that E[α2] = ax+ a2x2, we have

V[y] =
x

a
+ x2 + b2 − x2 =

x

a
+ b2. (4)

B. Likelihood Function of Single-Pixel Image

From the definition of the probability mass function (PMF)
of a Poisson random variable α, we get

P[α = k] =
e−ax(ax)k

k!
, k ≥ 0. (5)

From the relation between the probability density function
(PDF) and the PMF of discrete random variable established
with the Dirac delta function, i.e. fX(t) =

∑
k∈Z P[X =

k]δ(t− k), we can derive that

fα(t|a, x) =
∞∑
k=0

e−ax(ax)k

k!
δ(t− k). (6)

Let us define α′ = 1
aα. Then, the cumulative distribution

function (CDF) of this random variable α′ has the following
form

Fα′(t) = P[α′ ≤ t] = P[α ≤ at] = Fα(at). (7)

By taking the derivative of Equation (7), the PDF of α′ can
be found

fα′(t) =
dFα′(t)

dt
=

dFα(at)

dt
= afα(at). (8)

Hence, by combining Equations (6) and (8), the likelihood
function of α′, which consists of the first part of the noise
model, can be derived

fα′(t|a, x) = a

∞∑
k=0

e−ax(ax)k

k!
δ(at− k)︸ ︷︷ ︸
= 1

a δ(t− k
a )

=

∞∑
k=0

e−ax(ax)k

k!
δ(t− k/a).

(9)

On the other hand, the likelihood function of a Gaussian
random variable β with 0 mean is defined as

fβ(t|b) =
1

b
√
2π

e−t2/2b2 . (10)

We then combine those equations and find the likelihood
function of y. Since we know that α′ and β are independent
of each other, we have that

L(y|a, b, x) = (fα′ ∗ fβ)(y|a, b, x)

=

∞∑
k=0

(ax)k

k!b
√
2π

exp

(
−ax− (y − k/a)2

2b2

)
.

(11)

C. Maximum Likelihood Solution for Single-Pixel Image

As derived, the maximum likelihood solution for a single-
pixel image is the following

â, b̂ = argmax
a,b

L(y|a, b, x)

= argmax
a,b

∞∑
k=0

(ax)k

k!b
√
2π

exp

(
−ax− (y − k/a)2

2b2

)
.

(12)

D. Likelihood Function of Multi-Pixel Image

We represent images as vectors of pixels, like yn and xn

where n ∈ N is the index of single pixels. Hence, using this
notation we obtain

L(yn|a, b, xn) =

∞∑
k=0

(axn)
k

k!b
√
2π

exp

(
−axn − (yn − k/a)2

2b2

)
.

(13)
Given x, i.e., the vector of all xn, we can see that yn and

yn′ are independent ∀n ̸= n′. Therefore, we have

L(y|a, b, x) =
∏
n

∞∑
k=0

(axn)
k

k!b
√
2π

exp

(
−axn − (yn − k/a)2

2b2

)
.

(14)
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E. Maximum Likelihood Solution for Multi-Pixel Image
Lastly, we get the following maximization problem

â, b̂ = argmax
a,b

∏
n

∞∑
k=0

(axn)
k

k!b
√
2π

exp

(
−axn − (yn − k/a)2

2b2

)
.

(15)

Using the strict monotonicity of the logarithm, we can
simplify the optimization problem while not altering its results
by using the log-likelihood LL

LL(y|a, b, x) =
∑
n

log

( ∞∑
k=0

(axn)
k

k!b
√
2π

exp

(
−axn − (yn − k/a)2

2b2

))
.

(16)

Thus, the optimization problem becomes

â, b̂ = argmax
a,b

LL(y|a, b, x). (17)

In order to decrease the high computational complexity, we
limit the range of k to a maximum value kmax which has to
be chosen large enough to get a good approximation

â, b̂ ≈ argmax
a,b

∑
n

log

(
kmax∑
k=0

(axn)
k

k!b
√
2π

exp

(
−axn − (yn − k/a)2

2b2

))
.

(18)

With bigger values of k the log-likelihood starts to plateau
and does not grow significantly anymore. Hence, by limiting
the sum to a large enough kmax, the approximation of the log-
likelihood is still good. Typically, we choose kmax = 100.
We illustrate this property in the next Figure 1 where we
can see how the log-likelihood is indeed reaching a plateau.
We average over 25 pixels that we sample randomly, 25
linearly spaced values for a ∈ [1, 100] and b ∈ [0.01, 0.15].
Additionally, we show the growing computation time needed
to obtain those results.

Fig. 1. The evolution of the log-likelihood with bigger k alongside the
computation time.

II. CUMULANTS

A. The cumulant of a distribution

For a random variable X following the distribution X , we
consider the cumulant-generating function defined as

KX (t) = log(E[eXt]). (19)

Then, we define κr[X ], the r-th cumulant of X , as

κr[X ] := K
(r)
X (0), (20)

with K
(r)
X (0) being the r-th derivative of KX evaluated in 0.

B. Linearity

The cumulant-generating function of a sum of independent
distributions is the sum of their cumulant-generating functions.

Proof.

KX+Y(t) = log(E(e(X+Y )t))

= log(E[eXt+Y t])

= log(E[eXteY t])

= log(E[eXt]E[eY t])

= log(E[eXt]) + log(E[eY t])

= KX (t) +KY(t).

(21)

■

C. Homogeneity

The r-th cumulant is homogeneous of degree r.

Proof.
κr[aX ] = arκr[X ]. (22)

■

D. Unbiased estimator

For a vector x obtained by sampling independently n times
from the distribution X , the author of [1] describes an unbiased
estimator of κ2[X ], κ3[X ],

κ2[X ] =
n

n− 1
m2(x), κ3[X ] =

n2

(n− 1)(n− 2)
m3(x),

(23)

with m2 being the sample variance (2-rd sample central
moment) and m3 the 3-rd sample central moment, that can
be calculated using the formulae taken from [2]

m2(x) =
n− 1

n

∑
i

(xi − x)2

m3(x) =
(n− 1)(n− 2)

n2

∑
i

(xi − x)3.

(24)

E. Cumulant of Poisson-Gaussian Noise Model

We have that Y = P(aX )
a +N (0, b2) and we want to express

κ2[Y] and κ3[Y] as a function of a and b. First, we use Equa-
tion (21), and get that, κr[Y] = κr

[
P(aX )

a

]
+ κr[N (0, b2)].
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1) Gaussian noise component: The cumulants of N (0, b2)
are known to be

κ2[N (0, b2)] = b2

κ3[N (0, b2)] = 0.
(25)

2) Poisson noise component: Instead of trying to find the
cumulant of P(aX )

a , we can use Equation (22), and find the
cumulant of Z ∼ Z = P(aX )

eKZ(t) =
∑
k

P[Z = k]etk. (26)

Moreover, we know that

P[Z = k] =
∑
i

P[X = xi]P[Z = k|X = i]

=
∑
i

ni
(axi)

ke−axi

k!
,

(27)

where ni =
|{ j:xj=xi }|

n is the proportion of intensities that
are equal to a given one xi.

Thus, we have that

eKZ(t) =
∑
k

P[Z = k]etk

=
∑
k

∑
i

ni
(axi)

ke−axi

k!
exp(t)k

=
∑
i

ni
e−axi

exp(−axiet)

∑
k

(axie
t)k exp(−axie

t)

k!

=
∑
i

ni exp(axi(e
t − 1)).

(28)

If we further note that, f : t 7→
∑

i ni exp(axi(e
t − 1)),

then, we get that KZ(t) = log(f(t)). Hence, we can now
compute the different derivatives of KZ(t)

KZ(t) = log(f(t))

K1
Z(t) =

f (1)(t)

f(t)

K2
Z(t) =

f (2)(t)f(t)− f (1)(t)2

f(t)2

K3
Z(t) =

f(t)[f(t)f (3)(t)− 3f (2)(t)f (1)(t)] + 2f (1)(t)3

f(t)3
.

(29)

Further, by evaluating those at 0, we get

κ0[Z] = 0

κ1[Z] = ax

κ2[Z] = ax+ a2x2 − a2x2

κ3[Z] = a3[x3 − 3x2x+ 2x3] + a2[3x2 − 3x2] + ax,

(30)

using the properties that

f(0) = 1

f (1)(0) = ax

f (2)(0) = ax+ a2x2

f (3)(0) = ax+ 3a2x2 + 2a3x3.

(31)

Then, using Equation (22), we obtain

κ2

[
P(aX )

a

]
=

x

a
+ x2 − x2

κ3

[
P(aX )

a

]
= x3 − 3x2x+ 2x3 + 3

x2

a
− 3

x2

a
+

x

a2
.

(32)

3) Poisson-Gaussian Noise Model: By putting Equa-
tions (25) and (32) together, we obtain the complete expression
of the cumulants

κ2[Y] =
x

a
+ x2 − x2 + b2

κ3[Y] = x3 − 3x2x+ 2x3 + 3
x2

a
− 3

x2

a
+

x

a2
.

(33)

III. CNN ARCHITECTURE

The detailed architecture of the CNN can be found in table I.

TABLE I
ARCHITECTURE OF THE CNN

Layer Out channels Parameters
Input 1 -

Conv2D 16 kernel size = (3, 3), padding = same
ReLU 16 -

BatchNorm 16 over the channels
MaxPool2D 16 pool size = (2, 2)

Conv2D 32 kernel size = (3, 3), padding = same
ReLU 32 -

BatchNorm 32 over the channels
MaxPool2D 32 pool size = (2, 2)

Conv2D 64 kernel size = (3, 3), padding = same
ReLU 64 -

BatchNorm 64 over the channels
MaxPool2D 64 pool size = (2, 2)

Dense 16 -
ReLU 16 -

BatchNorm 16 over the channels
Dropout 16 rate = 0.5
Dense 4 -
ReLU 4 -
Dense 2 -
Linear 2 -
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