PoGaIN: Supplementary Material

Nicolas Bähler, Majed El Helou, Étienne Objois, Kaan Okumuş, and Sabine Süsstrunk, Fellow, IEEE.

I. Maximum Likelihood Derivation

A. Poisson-Noise Modeling

Let us denote the observed noisy image as y and the groundtruth noise-free image as x. Then, the Poisson-Gaussian model takes the form of the following equation

$$
\begin{equation*}
y=\frac{1}{a} \alpha+\beta, \quad \alpha \sim \mathcal{P}(a x), \quad \beta \sim \mathcal{N}\left(0, b^{2}\right) \tag{1}
\end{equation*}
$$

Using the linearity property of expectation, we can compute the expected value

$$
\begin{equation*}
\mathbb{E}[y]=\frac{1}{a} \mathbb{E}[\alpha]=\frac{1}{a} a x=x . \tag{2}
\end{equation*}
$$

Further, the variance has the following expression

$$
\begin{equation*}
\mathbb{V}[y]=\mathbb{E}\left[\left(\frac{1}{a} \alpha+\beta\right)^{2}\right]-x^{2}=\frac{1}{a^{2}} \mathbb{E}\left[\alpha^{2}\right]+b^{2}-x^{2} \tag{3}
\end{equation*}
$$

Given that $\mathbb{E}\left[\alpha^{2}\right]=a x+a^{2} x^{2}$, we have

$$
\begin{equation*}
\mathbb{V}[y]=\frac{x}{a}+x^{2}+b^{2}-x^{2}=\frac{x}{a}+b^{2} \tag{4}
\end{equation*}
$$

B. Likelihood Function of Single-Pixel Image

From the definition of the probability mass function (PMF) of a Poisson random variable α, we get

$$
\begin{equation*}
\mathbb{P}[\alpha=k]=\frac{e^{-a x}(a x)^{k}}{k!}, \quad k \geq 0 . \tag{5}
\end{equation*}
$$

From the relation between the probability density function (PDF) and the PMF of discrete random variable established with the Dirac delta function, i.e. $f_{X}(t)=\sum_{k \in \mathbb{Z}} \mathbb{P}[X=$ $k] \delta(t-k)$, we can derive that

$$
\begin{equation*}
f_{\alpha}(t \mid a, x)=\sum_{k=0}^{\infty} \frac{e^{-a x}(a x)^{k}}{k!} \delta(t-k) \tag{6}
\end{equation*}
$$

Let us define $\alpha^{\prime}=\frac{1}{a} \alpha$. Then, the cumulative distribution function (CDF) of this random variable α^{\prime} has the following form

$$
\begin{equation*}
F_{\alpha^{\prime}}(t)=\mathbb{P}\left[\alpha^{\prime} \leq t\right]=\mathbb{P}[\alpha \leq a t]=F_{\alpha}(a t) \tag{7}
\end{equation*}
$$

By taking the derivative of Equation (7), the PDF of α^{\prime} can be found

$$
\begin{equation*}
f_{\alpha^{\prime}}(t)=\frac{d F_{\alpha^{\prime}}(t)}{d t}=\frac{d F_{\alpha}(a t)}{d t}=a f_{\alpha}(a t) \tag{8}
\end{equation*}
$$

Hence, by combining Equations (6) and (8), the likelihood function of α^{\prime}, which consists of the first part of the noise model, can be derived

$$
\begin{align*}
f_{\alpha^{\prime}}(t \mid a, x) & =a \sum_{k=0}^{\infty} \frac{e^{-a x}(a x)^{k}}{k!} \underbrace{\delta(a t-k)}_{=\frac{1}{a} \delta\left(t-\frac{k}{a}\right)} \tag{9}\\
& =\sum_{k=0}^{\infty} \frac{e^{-a x}(a x)^{k}}{k!} \delta(t-k / a)
\end{align*}
$$

On the other hand, the likelihood function of a Gaussian random variable β with 0 mean is defined as

$$
\begin{equation*}
f_{\beta}(t \mid b)=\frac{1}{b \sqrt{2 \pi}} e^{-t^{2} / 2 b^{2}} \tag{10}
\end{equation*}
$$

We then combine those equations and find the likelihood function of y. Since we know that α^{\prime} and β are independent of each other, we have that

$$
\begin{align*}
\mathcal{L}(y \mid a, b, x) & =\left(f_{\alpha^{\prime}} * f_{\beta}\right)(y \mid a, b, x) \\
& =\sum_{k=0}^{\infty} \frac{(a x)^{k}}{k!b \sqrt{2 \pi}} \exp \left(-a x-\frac{(y-k / a)^{2}}{2 b^{2}}\right) \tag{11}
\end{align*}
$$

C. Maximum Likelihood Solution for Single-Pixel Image

As derived, the maximum likelihood solution for a singlepixel image is the following

$$
\begin{align*}
\hat{a}, \hat{b} & =\arg \max _{a, b} \mathcal{L}(y \mid a, b, x) \\
& =\arg \max _{a, b} \sum_{k=0}^{\infty} \frac{(a x)^{k}}{k!b \sqrt{2 \pi}} \exp \left(-a x-\frac{(y-k / a)^{2}}{2 b^{2}}\right) \tag{12}
\end{align*}
$$

D. Likelihood Function of Multi-Pixel Image

We represent images as vectors of pixels, like y_{n} and x_{n} where $n \in \mathbb{N}$ is the index of single pixels. Hence, using this notation we obtain
$\mathcal{L}\left(y_{n} \mid a, b, x_{n}\right)=\sum_{k=0}^{\infty} \frac{\left(a x_{n}\right)^{k}}{k!b \sqrt{2 \pi}} \exp \left(-a x_{n}-\frac{\left(y_{n}-k / a\right)^{2}}{2 b^{2}}\right)$.
Given x, i.e., the vector of all x_{n}, we can see that y_{n} and $y_{n^{\prime}}$ are independent $\forall n \neq n^{\prime}$. Therefore, we have

$$
\begin{align*}
\mathcal{L}(y \mid a, b, x)=\prod_{n} \sum_{k=0}^{\infty} & \frac{\left(a x_{n}\right)^{k}}{k!b \sqrt{2 \pi}} \tag{14}\\
& \quad \exp \left(-a x_{n}-\frac{\left(y_{n}-k / a\right)^{2}}{2 b^{2}}\right) .
\end{align*}
$$

E. Maximum Likelihood Solution for Multi-Pixel Image

Lastly, we get the following maximization problem

$$
\begin{align*}
\hat{a}, \hat{b}=\arg \max _{a, b} \prod_{n} \sum_{k=0}^{\infty} & \frac{\left(a x_{n}\right)^{k}}{k!b \sqrt{2 \pi}} \tag{15}\\
& \quad \exp \left(-a x_{n}-\frac{\left(y_{n}-k / a\right)^{2}}{2 b^{2}}\right) .
\end{align*}
$$

Using the strict monotonicity of the logarithm, we can simplify the optimization problem while not altering its results by using the log-likelihood $\mathcal{L L}$

$$
\begin{align*}
\mathcal{L L}(y \mid a, b, x)=\sum_{n} & \log \left(\sum_{k=0}^{\infty} \frac{\left(a x_{n}\right)^{k}}{k!b \sqrt{2 \pi}}\right. \tag{16}\\
& \left.\quad \exp \left(-a x_{n}-\frac{\left(y_{n}-k / a\right)^{2}}{2 b^{2}}\right)\right) .
\end{align*}
$$

Thus, the optimization problem becomes

$$
\begin{equation*}
\hat{a}, \hat{b}=\arg \max _{a, b} \mathcal{L} \mathcal{L}(y \mid a, b, x) \tag{17}
\end{equation*}
$$

In order to decrease the high computational complexity, we limit the range of k to a maximum value $k_{\max }$ which has to be chosen large enough to get a good approximation

$$
\begin{align*}
\hat{a}, \hat{b} \approx \arg \max _{a, b} \sum_{n} & \log \left(\sum_{k=0}^{k_{\max }} \frac{\left(a x_{n}\right)^{k}}{k!b \sqrt{2 \pi}}\right. \tag{18}\\
& \left.\exp \left(-a x_{n}-\frac{\left(y_{n}-k / a\right)^{2}}{2 b^{2}}\right)\right) .
\end{align*}
$$

With bigger values of k the log-likelihood starts to plateau and does not grow significantly anymore. Hence, by limiting the sum to a large enough $k_{\max }$, the approximation of the loglikelihood is still good. Typically, we choose $k_{\max }=100$. We illustrate this property in the next Figure 1 where we can see how the log-likelihood is indeed reaching a plateau. We average over 25 pixels that we sample randomly, 25 linearly spaced values for $a \in[1,100]$ and $b \in[0.01,0.15]$. Additionally, we show the growing computation time needed to obtain those results.

Fig. 1. The evolution of the log-likelihood with bigger k alongside the computation time.

II. Cumulants

A. The cumulant of a distribution

For a random variable X following the distribution \mathcal{X}, we consider the cumulant-generating function defined as

$$
\begin{equation*}
K_{\mathcal{X}}(t)=\log \left(\mathbb{E}\left[e^{X t}\right]\right) \tag{19}
\end{equation*}
$$

Then, we define $\kappa_{r}[\mathcal{X}]$, the r-th cumulant of \mathcal{X}, as

$$
\begin{equation*}
\kappa_{r}[\mathcal{X}]:=K_{\mathcal{X}}^{(r)}(0) \tag{20}
\end{equation*}
$$

with $K_{\mathcal{X}}^{(r)}(0)$ being the r-th derivative of $K_{\mathcal{X}}$ evaluated in 0 .

B. Linearity

The cumulant-generating function of a sum of independent distributions is the sum of their cumulant-generating functions.

Proof.

$$
\begin{align*}
K_{\mathcal{X}+\mathcal{Y}}(t) & =\log \left(\mathbb{E}\left(e^{(X+Y) t}\right)\right) \\
& =\log \left(\mathbb{E}\left[e^{X t+Y t}\right]\right) \\
& =\log \left(\mathbb{E}\left[e^{X t} e^{Y t}\right]\right) \\
& =\log \left(\mathbb{E}\left[e^{X t}\right] \mathbb{E}\left[e^{Y t}\right]\right) \tag{21}\\
& =\log \left(\mathbb{E}\left[e^{X t}\right]\right)+\log \left(\mathbb{E}\left[e^{Y t}\right]\right) \\
& =K_{\mathcal{X}}(t)+K_{\mathcal{Y}}(t) .
\end{align*}
$$

C. Homogeneity

The r-th cumulant is homogeneous of degree r.
Proof.

$$
\begin{equation*}
\kappa_{r}[a \mathcal{X}]=a^{r} \kappa_{r}[\mathcal{X}] . \tag{22}
\end{equation*}
$$

D. Unbiased estimator

For a vector x obtained by sampling independently n times from the distribution \mathcal{X}, the author of [1] describes an unbiased estimator of $\kappa_{2}[\mathcal{X}], \kappa_{3}[\mathcal{X}]$,

$$
\begin{equation*}
\kappa_{2}[\mathcal{X}]=\frac{n}{n-1} m_{2}(x), \quad \kappa_{3}[\mathcal{X}]=\frac{n^{2}}{(n-1)(n-2)} m_{3}(x) \tag{23}
\end{equation*}
$$

with m_{2} being the sample variance (2-rd sample central moment) and m_{3} the 3 -rd sample central moment, that can be calculated using the formulae taken from [2]

$$
\begin{align*}
& m_{2}(x)=\frac{n-1}{n} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \\
& m_{3}(x)=\frac{(n-1)(n-2)}{n^{2}} \sum_{i}\left(x_{i}-\bar{x}\right)^{3} \tag{24}
\end{align*}
$$

E. Cumulant of Poisson-Gaussian Noise Model

We have that $\mathcal{Y}=\frac{\mathcal{P}(a \mathcal{X})}{a}+\mathcal{N}\left(0, b^{2}\right)$ and we want to express $\kappa_{2}[\mathcal{Y}]$ and $\kappa_{3}[\mathcal{Y}]$ as a function of a and b. First, we use Equation (21), and get that, $\kappa_{r}[\mathcal{Y}]=\kappa_{r}\left[\frac{\mathcal{P}(a \mathcal{X})}{a}\right]+\kappa_{r}\left[\mathcal{N}\left(0, b^{2}\right)\right]$.

1) Gaussian noise component: The cumulants of $\mathcal{N}\left(0, b^{2}\right)$ are known to be

$$
\begin{align*}
& \kappa_{2}\left[\mathcal{N}\left(0, b^{2}\right)\right]=b^{2} \tag{25}\\
& \kappa_{3}\left[\mathcal{N}\left(0, b^{2}\right)\right]=0
\end{align*}
$$

2) Poisson noise component: Instead of trying to find the cumulant of $\frac{\mathcal{P}(a \mathcal{X})}{a}$, we can use Equation (22), and find the cumulant of $Z \sim \mathcal{Z}=\mathcal{P}(a \mathcal{X})$

$$
\begin{equation*}
e^{K \mathcal{Z}(t)}=\sum_{k} \mathbb{P}[Z=k] e^{t k} \tag{26}
\end{equation*}
$$

Moreover, we know that

$$
\begin{align*}
\mathbb{P}[Z=k] & =\sum_{i} \mathbb{P}\left[X=x_{i}\right] \mathbb{P}[Z=k \mid X=i] \\
& =\sum_{i} n_{i} \frac{\left(a x_{i}\right)^{k} e^{-a x_{i}}}{k!} \tag{27}
\end{align*}
$$

where $n_{i}=\frac{\left|\left\{j: x_{j}=x_{i}\right\}\right|}{n}$ is the proportion of intensities that are equal to a given one x_{i}.

Thus, we have that

$$
\begin{align*}
e^{K \mathcal{Z}(t)} & =\sum_{k} \mathbb{P}[Z=k] e^{t k} \\
& =\sum_{k} \sum_{i} n_{i} \frac{\left(a x_{i}\right)^{k} e^{-a x_{i}}}{k!} \exp (t)^{k} \\
& =\sum_{i} n_{i} \frac{e^{-a x_{i}}}{\exp \left(-a x_{i} e^{t}\right)} \sum_{k} \frac{\left(a x_{i} e^{t}\right)^{k} \exp \left(-a x_{i} e^{t}\right)}{k!} \\
& =\sum_{i} n_{i} \exp \left(a x_{i}\left(e^{t}-1\right)\right) \tag{28}
\end{align*}
$$

If we further note that, $f: t \mapsto \sum_{i} n_{i} \exp \left(a x_{i}\left(e^{t}-1\right)\right)$, then, we get that $K_{\mathcal{Z}}(t)=\log (f(t))$. Hence, we can now compute the different derivatives of $K_{\mathcal{Z}}(t)$

$$
\begin{align*}
K_{\mathcal{Z}}(t) & =\log (f(t)) \\
K_{\mathcal{Z}}^{1}(t) & =\frac{f^{(1)}(t)}{f(t)} \\
K_{\mathcal{Z}}^{2}(t) & =\frac{f^{(2)}(t) f(t)-f^{(1)}(t)^{2}}{f(t)^{2}} \\
K_{\mathcal{Z}}^{3}(t) & =\frac{f(t)\left[f(t) f^{(3)}(t)-3 f^{(2)}(t) f^{(1)}(t)\right]+2 f^{(1)}(t)^{3}}{f(t)^{3}} . \tag{29}
\end{align*}
$$

Further, by evaluating those at 0 , we get

$$
\begin{align*}
\kappa_{0}[\mathcal{Z}] & =0 \\
\kappa_{1}[\mathcal{Z}] & =a \bar{x} \\
\kappa_{2}[\mathcal{Z}] & =a \bar{x}+a^{2} \overline{x^{2}}-a^{2} \bar{x}^{2} \tag{30}\\
\kappa_{3}[\mathcal{Z}] & =a^{3}\left[\overline{x^{3}}-3 \overline{x^{2}} \bar{x}+2 \bar{x}^{3}\right]+a^{2}\left[3 \overline{x^{2}}-3 \bar{x}^{2}\right]+a \bar{x}
\end{align*}
$$

using the properties that

$$
\begin{align*}
f(0) & =1 \\
f^{(1)}(0) & =a \bar{x} \\
f^{(2)}(0) & =a \bar{x}+a^{2} \overline{x^{2}} \tag{31}\\
f^{(3)}(0) & =a \bar{x}+3 a^{2} \overline{x^{2}}+2 a^{3} \overline{x^{3}}
\end{align*}
$$

Then, using Equation (22), we obtain

$$
\begin{align*}
\kappa_{2}\left[\frac{\mathcal{P}(a \mathcal{X})}{a}\right] & =\frac{\bar{x}}{a}+\overline{x^{2}}-\bar{x}^{2} \\
\kappa_{3}\left[\frac{\mathcal{P}(a \mathcal{X})}{a}\right] & =\overline{x^{3}}-3 \overline{x^{2}} \bar{x}+2 \bar{x}^{3}+3 \frac{\overline{x^{2}}}{a}-3 \frac{\bar{x}^{2}}{a}+\frac{\bar{x}}{a^{2}} \tag{32}
\end{align*}
$$

3) Poisson-Gaussian Noise Model: By putting Equations (25) and (32) together, we obtain the complete expression of the cumulants

$$
\begin{align*}
\kappa_{2}[\mathcal{Y}] & =\frac{\bar{x}}{a}+\overline{x^{2}}-\bar{x}^{2}+b^{2} \tag{33}\\
\kappa_{3}[\mathcal{Y}] & =\overline{x^{3}}-3 \overline{x^{2}} \bar{x}+2 \bar{x}^{3}+3 \frac{\overline{x^{2}}}{a}-3 \frac{\bar{x}^{2}}{a}+\frac{\bar{x}}{a^{2}}
\end{align*}
$$

III. CNN ARCHITECTURE

The detailed architecture of the CNN can be found in table I.

TABLE I
Architecture of the CNN

Layer	Out channels	Parameters
Input	1	-
Conv2D	16	kernel_size $=(3,3)$, padding $=$ same
ReLU	16	-
BatchNorm	16	over the channels
MaxPool2D	16	pool_size $=(2,2)$
Conv2D	32	kernel_size $=(3,3)$, padding $=$ same
ReLU	32	-
BatchNorm	32	over the channels
MaxPool2D	32	pool_size $=(2,2)$
Conv2D	64	kernel_size $=(3,3)$, padding $=$ same
ReLU	64	-
BatchNorm	64	over the channels
MaxPool2D	64	pool_size $=(2,2)$
Dense	16	-
ReLU	16	-
BatchNorm	16	over the channels
Dropout	16	rate $=0.5$
Dense	4	-
ReLU	4	-
Dense	2	-
Linear	2	-

REFERENCES

[1] E. W. Weisstein, "k-statistic from mathworld-a wolfram web resource." [Online]. Available: https://mathworld.wolfram.com/k-Statistic.html
[2] - , "Sample central moment. from mathworld-a wolfram web resource." [Online]. Available: https://mathworld.wolfram.com/ SampleCentralMoment.html

