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Abstract

Image noise can often be accurately fitted to a Poisson-Gaussian distribution. However, estimat-

ing the distribution parameters from a noisy image only is a challenging task. Here, we study the

case when paired noisy and noise-free samples are accessible. No method is currently available

to exploit the noise-free information, which may help to achieve more accurate estimations. To

fill this gap, we derive a novel, cumulant-based, approach for Poisson-Gaussian noise modeling

from paired image samples.

Motivation

Denoising in special case

Restrict problem to subspace where paired samples are obtainable

Additional noisy-free information may improve estimation performance

Figure 1. Noise-free and noisy image from BSD300 [2].

Problem at hand

Perform Poisson-Gaussian noise estimation, often required prior to denoising

Restricted problem setting: paired samples

=⇒ Design noise modeling approach which is taking advantage of special setting!

Applications:

Dataset modelling, deep learning

Imaging system analysis

Results

Noise modeling:

Statistical approach based on cumulant expansion

Exploiting paired samples

Outperforming baseline methods

Understanding of the problem:

Derivation of log-likelihood function

Explored approaches

Using noisy images only:

FOI, algorithm introduced by Foi et al. [1]

CNN, Convolutional Neural Network

Using paired samples:

Maximum log-likelihood

VAR, method based on variance

OURS, approach using the cumulant expansion

Noise Model

Inspired by Foi et al. [1], where x and y are the noise-free and noisy images respectively:

y = ηp + ηg, (1)

ηp ∼ 1
a

P(ax), ηg ∼ N (0, b2), a ∈ (0, 100]. (2)

Here, a is equal to the quantum efficiency expressed as a percentage of the imaging pipeline at
hand. Further, one can see in formula (3) that the expected value of the model is independent

of the parameters but that the variance strongly depends on the values of a and b:

E[y] = x, V[y] = x

a
+ b2. (3)

Log-Likelihood

We derive the log-likelihood for the given problem, but the optimization to find its maximum

value is computationally demanding, rendering this approach unfeasible on a larger scale,

LL(y|a, b, x) =
∑

n

log

 ∞∑
k=0

(axn)k

k!b
√

2π
exp

(
−axn − (yn − k/a)2

2b2

). (4)

OURS

Given a random variable X ∼ X :

Definition

Cumulant-generating function:

KX (t) = log(E[eXt]). (5)

Definition

r-th cumulant of X :
κr[X ] = K

(r)
X (0). (6)

Unbiased estimator via k-statistics [3], given n samples:

κ2[X ] = n

n − 1
m2(x), κ3[X ] = n2

(n − 1)(n − 2)
m3(x), (7)

using the sample central moments [4]

m2(x) = n − 1
n

∑
i

(xi − x)2, m3(x) = (n − 1)(n − 2)
n2

∑
i

(xi − x)3, (8)

where x denotes the mean.

Let xi be n pixels of a noise-free image, and X and Y be two random variables such that:

X ∼ X , P[X = xi] = |{ k : xk = xi }|
n

, Y ∼ Y = P(aX )
a

+ N (0, b2). (9)

We show that: {
κ2[Y ] = x

a + x2 − x2 + b2

κ3[Y ] = x3 − 3x2x + 2x3 + 3x2
a − 3x2

a + x
a2

. (10)

Hence, by using formula (7) one can estimate both κ2[Y ] and κ3[Y ] and insert it into formula (10)
which leads to a system of two equations and two unknowns, a and b.

Estimation error

We obtain the mean squared error (MSE) shown below by picking 10 images from the validation
set of BSD300 [2], 25 different values of a and b respectively, and also 10 different seeds to
synthesize 62500 image pairs for validation. Note that the maximum log-likelihood approach is
not evaluated here due to its computational complexity. Further, we show the MSE for â−1

and b̂2 because those are the values which are effectively estimated using our implementation
before then either the inverse or the square root is taken, leading to a more direct evaluation of

the estimation.

Figure 2. MSE for each method as a function of a (top) and b (bottom).

Table 1. Statistics about the MSE error on â−1 for various methods.

Method Mean Standard Dev. 75%-Quantile Maximum

FOI 3.15 × 103 7.46 × 105 5.64 × 10−4 1.86 × 108

CNN 1.78 × 10−2 8.67 × 10−2 7.40 × 10−5 6.34 × 10−1

VAR 8.00 × 10−6 8.50 × 10−5 ≈ 0 3.54 × 10−3

OURS 3.00 × 10−6 1.40 × 10−5 1.00 × 10−6 2.77 × 10−4

Table 2. Statistics about the MSE error on b̂2 for various methods.

Method Mean Standard Dev. 75%-Quantile Maximum

FOI 3.46 × 10−1 6.67 9.40 × 10−5 6.16 × 102

CNN 8.00 × 10−6 2.30 × 10−5 5.00 × 10−6 3.87 × 10−4

VAR 1.00 × 10−6 1.10 × 10−5 ≈ 0 4.45 × 10−4

OURS ≈ 0 1.00 × 10−6 ≈ 0 3.30 × 10−5
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