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ABSTRACT

Autism spectrum disorder (ASD) is a lifelong neurode-
velopmental disorder with very high prevalence around the
world. Research progress in the field of ASD facial analysis
in pediatric patients has been hindered due to a lack of well-
established baselines. In this paper, we propose the use of the
Vision Transformer (ViT) for the computational analysis of
pediatric ASD. The presented model, known as ViTASD, dis-
tills knowledge from large facial expression datasets and offers
model structure transferability. Specifically, VITASD employs
a vanilla ViT to extract features from patients’ face images and
adopts a lightweight decoder with a Gaussian Process layer to
enhance the robustness for ASD analysis. Extensive experi-
ments conducted on standard ASD facial analysis benchmarks
show that our method outperforms all of the representative ap-
proaches in ASD facial analysis, while the VITASD-L achieves
a new state-of-the-art. Our code and pretrained models are
available at https://github.com/IrohXu/ViTASD.

Index Terms— Autism Spectrum Disorder, Transfer
Learning, Vision Transformer (ViT), Knowledge Distillation
(KD)

1. INTRODUCTION

Over the past decade, the significant clinical and scientific
value of computer-assisted diagnosis (CAD) based on machine
learning has been increasingly recognized. In particular, neu-
ral networks and transfer learning offer the benefit of learning
compact and fixed dimensional representations from large-
scale public datasets and utilizing the resulting representation
to finetune models in various fields of medicine. Recent re-
search shows that neural networks can be effective clinical
aids for mental illness prevention [1]. However, to date, the
progress of neural network approaches applied to the analysis
of pediatric autism spectrum disorder (ASD) is limited, in part
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due to the fact that ASD is a heterogeneous neurodevelopmen-
tal disorder with complex cognitive features [2]. As a result,
there are substantial difficulties in collecting ASD patient data
and designing accurate CAD systems. Considering the high
prevalence of ASD children, there is an urgent need for more
robust ASD early diagnosis tools in clinical practice.

Quantifiable indices for ASD diagnosis have received
much attention [2, 3]. In previous studies, most neural
network-based diagnoses of ASD focused on neuroimaging-
based approaches [4]. However, neuroimaging data collection
is often challenging due to non-cooperation from pediatric
patients [5]. Recently, techniques based on behaviour analysis
and affective computing have been introduced to address
some of these issues. Their key idea is that patients with
ASD exhibit altered attention and emotion to specific features
of visual information [3]. For ASD children, changes are
reflected in facial expressions and eye movement informa-
tion [6]. Compared with traditional neuroimaging methods,
these new methods predict potential ASD risk by directly
analyzing a patient’s face, eye-tracking (ET) and behavior, all
of which have the potential of integrating with other standard-
ized assessments, such as the autism diagnostic observation
schedule (ADOS).

Recent studies show that neural network-based methods
can successfully distinguish between ASD and non-ASD chil-
dren, given sufficient and well-annotated facial images [7].
In this work, Hosseini et al. explored different convolutional
neural networks (CNN) for facial analysis in ASD children
and noted that some models, such as MobileNet [8], can attain
an accuracy of 90% in classification of ASD and non-ASD
patients. These results imply that neural networks can learn
useful facial risk markers of ASD. In other works, Xie et al. [9]
and Han et al. [10] designed neural network models using ET
data to predict ASD. Their experiments demonstrated that
image data (face, ET) collected in vitro is a very promising
direction for designing ASD CAD systems.

Existing facial analysis methods for ASD detection rely
on CNNs for local feature extraction or as additional eye-
tracking object detection modules. On the other hand, ViTs,
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Fig. 1. Overview of the components of the proposed ViTASD model for pediatric autism spectrum disorder (ASD) prediction
from facial images. ViTASD consists of a Vision Transformer (ViT) encoder, a Gaussian layer-based decoder and a knowledge

distillation (KD) module.

in comparison to CNNs, better capture global context and

are less biased toward local textures [11]. However, in small

datasets, ViTs often perform worse than CNNs. This limitation
motivates us to think from a new direction: how to utilize
the strong representation learned from the pretrained ViT in

ASD facial analysis? In this work, we propose ViTASD, a

novel KD transformer baseline for ASD facial analysis. Our

contributions can be summarized as follows.

* We propose ViTASD, a novel model for automatic predic-
tion of the autism spectrum disorder (ASD) in pediatric
patients from facial images. ViTASD obtains state of the
art performance on the autism spectrum disorder children’s
dataset [12], a public benchmark.

* We empirically demonstrate capabilities of the ViTASD
model: ability to scale model size, support of newest masked
autoencoder (MAE) self-supervised learning, knowledge
transferability from a large-scale facial expression dataset
and large pretrained models.

2. METHODOLOGY

An overview of our proposed framework can be seen in Fig. 1.
The goal of ViTASD is to provide a simple yet robust base-
line for pediatric ASD detection from facial images. Thus,
we aim to keep the original ViT structure [13] without the
addition of more complex modules. The decoder of VITASD
is a lightweight multilayer perceptron (MLP) layer with an
optional Gaussian layer for Out-of-Distribution (OOD) data
points.

2.1. Structure of ViTASD baseline

Given a patient face image X € RH*W>3 ViTASD slices
the input image into 16 x 16 patches via the patch embedding
layer. The patches are then flattened to a K € RUsas +)xD
output with an additional class token. Here, D is the channel
dimension. Finally, the tokens are processed by several Trans-
former blocks, each composed of a multi-head self-attention
layer (MHA) and a multi-layer perceptron layer (MLP):

! = MHA (LN(K)) + K, )
Kiy1 = MLP(LN(Kj, ) + K1, (2)

where ¢ is the output of i-th Transformer block; M H A; 41 is
the multi-head self-attention layer of the ¢ 4 1-th Transformer
block; M LP;; is the multi-layer perceptron of the ¢ + 1-th
Transformer block.

2.2. Properties of VITASD

Pretraining data flexibility. In contrast to CNN-based meth-
ods, ViITASD benefits from the data flexibility from ViT in both
transfer learning and representation learning. In our model,
we explore data flexibility other than the default settings of
ImageNet-21k pretraining. In the ablation study (see Sec. 3.2),
we prove that both supervised and self-supervised pretraining
using AffectNet can improve the VITASD’s performance.

Model structure transferability. We empirically demonstrate
that ViTASD can distill knowledge from larger structures to
match performance in smaller ones. To fill the structure gap,
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Fig. 2. Knowledge distillation of ViTASD.

we introduce two distillation losses, the alignment loss L;ign
and the logit KD Loss L;,4i:, to substantially improve perfor-
mance of the student network (see Fig. 2). L,i4r aligns the
feature distillation on the attention maps of the shallow layers
(e.g., layers 0 and 1) using Mean Square Error (MSE), where
FC(+) is a linear layer to reshape the F1¢%her (o the same
dimension as FStudent, L04i+ ensures the classification logits
of the student ViTASD match those of the teacher ViTASD.
To summarize, we train the student model with the following
total loss:

Latign = MSE(FC(}—TWC’L”) — fStudent)
‘Clogit — MSE(]OgitTmChET(x)7 logitStUdent((E)) 3)

Lrxp = Liogit + Latign,

where « is a hyperparameter to balance the distillation loss.

Finetuning flexibility. We add a Gaussian Process Layer
decoder with an RBF kernel to ViTASD to enable finetun-
ing on out-of-domain data. This modification improves the
uncertainty representation of the model, hence enhancing its
robustness. This layer is implemented as a two-layer network:

O(x) =4/ % xcos(Wx +b) (4)

where x is the input, and W and b are frozen weights ini-
tialized randomly from Gaussian and uniform distributions,
respectively. ®(x) are the Random Fourier Features (RFF)
[14]. G is a learnable kernel weight similar to that of a Dense
layer.

logits(x) = ®(z)4,

3. EXPERIMENTS

3.1. Implementation details

ViTASD follows the DeiT III [15] architecture and the OOD
task setting [16] for ViT, i.e., three augmentations (grayscale,
solarization, Gaussian blur) and Cut-Mix, Mix-Up. We use
ViT-S [13], ViT-B [13], and ViT-L [13] as encoder backbones
and denote the corresponding models as ViITASD-S, ViTASD-
B, ViTASD-L. The backbones are initialized with two settings:

Table 1. The performance of ViTASD in different model scales
and pretrained settings.

Methods ‘ Params ‘ Pretrained ‘ Accuracy T

ResNet50 23.5M | ImageNet-21k | 91.00 £ 0.24
ResNet152 | 60.3M | ImageNet-21k | 91.33 £0.24
ResNetl152 | 60.3M | AffectNet [18] | 89.50 £ 0.24
ViTASD-S | 27.IM | ImageNet-21k | 91.00 £ 0.41
VITASD-B | 85.8M | ImageNet-21k | 92.83 £ 0.24
ViTASD-L | 307M | ImageNet-21k | 93.17 £ 0.24
ViTASD-L | 307M MAE [17] 94.00 + 0.41
VITASD-L | 307M | AffectNet[18] | 94.50 £ 0.23

Table 2. Knowledge distillation effect on ViTASD.

Student ‘ Teacher ‘ Teacher Pretrained  Accuracy 1
VIiTASD-S | ViTASD-B AffectNet [18] 93.50 + 0.24
ViTASD-B | ViTASD-L AffectNet [18] 94.00 £ 0.24

(a) MAE [17] pretrained weights from AffectNet [18] (the
largest facial expressions database); (b) general supervised
learning pretrained weights from AffectNet [18]. We use
the 224 %224 input resolution and AdamW optimizer with a
learning rate of le-4. The a for KD training is 5e-5. All
models are trained for 300 epochs with batch size of 128 on 4
NVIDIA A100 GPUs.

We use the largest publicly available facial expression
recognition dataset AffectNet [18] (a facial expression dataset
with more than 1M images) to pretrain ViTASD in both super-
vised and self-supervised ways. For self-supervised learning,
we adopt MAE [17] by randomly masking 75% patches from
the input images and reconstructing those masked patches.
The performance of VIiTASD is evaluated on the Autism spec-
trum disorder (ASD) children’s dataset [12], which consists of
2,926 images of resolution 224 x 224 pixels with binary labels
(non-autism and autism). The dataset is split into training set
(2,526), validation set (200), and test set (200) in its updated
version (see [12] for more details). We measure performance
using accuracy and area under the receiver operating charac-
teristic (AUROC) on binary labels (non-autism and autism).

3.2. Quantitative evaluation

We report performance comparisons between ViTASD and
the state-of-the-art approaches are shown in Table 3. From
the results, we make the following observations. (i) A pre-
trained ViT is significantly better in accuracy and AUROC
metrics than any CNN-based methods for ASD facial detec-
tion. (ii) The representations learned from the large-scale
facial expression dataset (AffectNet) are helpful for transfer
learning in ASD. With AffectNet pretraining, the performance
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Fig. 3. Visualization of the attention maps between the ASD classification token and all visual tokens in the 12 transformer layers
of ViTASD-B, where red and blue represent regions with high and low attention, respectively.

Table 3. Comparison of VITASD and SOTA methods on the test set of the autism spectrum disorder (ASD) children’s dataset [12].

Methods ‘ Backbone ‘ Params ‘ Pretrained ‘ Accuracy? AUROC?T

[19, 20] VGG-19 139M | ImageNet-21k | 90.50 £0.41 93.65 £ 0.13
[20] ResNet50 23.5M | ImageNet-21k | 91.00 £ 0.23 94.82 £+ 0.62
[19,21,7] MobileNetV3 42M | ImageNet-21k | 91.00 £0.23 94.43 £ 0.35
[22] EfficientNet-B4 17.6M | ImageNet-21k | 91.00 £0.41 95.13 £0.26
[19] Xception 20.8M | ImageNet-21k | 91.33 +0.24 95.40 £0.16
ViTASD-B ViT-B 85.8M | ImageNet-21k | 92.83 £0.24 96.94 +0.10
ViTASD-B | ViT-B + knowledge distillation | 85.8M | AffectNet [18] | 94.00 £0.24 97.16 £ 0.48
ViTASD-L ViT-L 307M | AffectNet [18] | 94.50 £ 0.23 97.92 £ 0.12

of ViITASD-L further increases to 94.50 accuracy, implying
the good knowledge transferability and flexibility of ViTASD.

We also evaluate VITASD with different ViT backbones
and report results in Table 1. We find that accuracy im-
provement between ResNet-50 and ResNet-152 is significantly
lower than between ViTASD-S and ViTASD-B, demonstrating
that the ViT model can better learn representation via large
facial dataset and transfer into a new ASD facial analysis task.
In Table 2, we further investigate the KD performance on
ViTASD-B to ViTASD-S and ViTASD-L to VIiTASD-B with
performance loss of 0.5%. The result illustrates the strong
model structure transferability of VITASD.

3.3. Visualization and interpretability

In order to show the interpretability of the proposed ViTASD,
we visualize the attention maps during inference on the test
set in Fig. 3. The attention map is the interaction between the
classification token and all visual tokens. The attention scores,

which showed the color in the attention maps, can be used to
understand which areas contribute most to the classification
result. For both autism and non-autism children’s’ face images,
the model attends most to the eye region, which is known to be
one of the most distinguishable features of the autism children
in clinical practice [23].

4. CONCLUSION AND DISCUSSION

In this paper, we propose ViTASD, the first ViT-based baseline
for pediatric ASD diagnosis. We have shown that pediatric
ASD can be formulated as a facial image classification problem
using a ViT, which achieves state-of-the-art performance in
both accuracy and AUROC, while generating attention maps
consistent with distinguishable ASD features. We hope this
work could provide insights to the biomedical imaging and
signal processing community for ASD research and inspire
further study on exploring the potential of applying explainable
ViTs in more facial analysis application tasks.
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