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ABSTRACT 

 

Recognizing signs in virtual reality (VR) is challenging; 

here, we developed an American Sign Language (ASL) 

recognition system in a VR environment. We collected a 

dataset of 2,500 ASL numerical digits (0-10) and 500 

instances of the ASL sign for TEA from 10 participants 

using an Oculus Quest 2. Participants produced ASL signs 

naturally, resulting in significant variability in location, 

orientation, duration, and motion trajectory. Additionally, 

the ten signers in this initial study were diverse in age, sex, 

ASL proficiency, and hearing status, with most being deaf 

lifelong ASL users. We report the accuracy results of the 

recognition model trained on this dataset and highlight three 

primary contributions of this work: 1) intentionally using 

highly-variable ASL production, 2) involving deaf ASL 

signers on the project team, and 3) analyzing the typical 

confusions of the recognition system. 

 

Index Terms—American sign language recognition, 

virtual reality, gesture recognition 

 

1. INTRODUCTION 

 

Sign languages are natural, full languages developed within 

the deaf or hard-of-hearing communities. Each signed 

language uses a set of specific signs and body movements 

unique to that language. Over 5% (430 million) of the 

world’s population has some form of hearing loss, which is 

projected to increase to 2.5 billion by 2050 [1]. Signed 

languages are unique depending on the surrounding culture, 

ethnicities, and geographical locations where they develop. 

Most of the world’s hearing people are not proficient in 

signed languages, and thus interpreters are often needed for 

medical, legal, and educational purposes. As emerging 

technologies continue to grow, sign language recognition 

may allow sign language users a more natural way of 

inputting information into a device. More recently, 

immersive technologies such as virtual reality (VR) are ripe 

with educational opportunities, including the potential for 

learning and interacting with signed languages in VR. 

Recognition of the users' signing is critical for signed 

languages to be effectively taught in VR [2]. This paper 

discusses the recognition of ASL, but our conclusions will 

also be relevant to other signed languages.  

ASL recognition is a growing research field [2]–[9]. Two-

dimensional (2D) camera/wearable device-based ASL 

recognition is the most popular and common approach, yet 

less efficient and difficult to use in real-life situations [10], 

[11] because ASL combines hand, face, and body posture 

with spatial information and dynamic movement. One study 

found that wearable devices are sometimes troublesome to 

use [12], and such wearable recognition devices have 

attracted little interest from signing communities [13]. 

Overall, a three-dimensional (3D) depth sensor-based 

camera provides better accuracy and ease [7], [14]. Virtual 

reality (VR) devices exhibit reasonably good recognition 

outcomes in some cases [3], [5]. However, none of these are 

full-fledged VR systems, with many existing efforts 

primarily dependent on the Leap Motion camera. Hence, 

standalone ASL recognition in VR remains an unsolved 

challenge. 

Recent research on ASL recognition algorithms typically 

uses deep learning (DL) algorithms. Survey shows that DL-

based algorithms provide superior accuracy [12], [15]. Since 

VR devices use embedded microprocessors with low 

computational power, designing a lightweight DL network 

is crucial. Here, we focused on using a simple network that 

can be easily computed within a VR environment. As part of 

our larger work [2], [16], we aim to teach people ASL using 

a virtual reality game-like environment. In this game, users 

will enter virtual reality and learn from signing avatars 

created from motion capture recordings. An example of the 

3D environment and the signing avatar is visible in Figure 1. 

A critical part of this system is incorporating feedback to 

inform the users when their sign productions are correct. 

The feedback relies on capturing and analyzing users’ 

signed productions via the built-in cameras on the VR 

device. We developed a VR ASL recognition system trained 

on highly-variable signed input to address previously 

described limitations. The term “highly variable” indicates 

that the participants are from different backgrounds, age 

groups, and levels of ASL fluency. The signs themselves 

were not inherently “highly-variable”; rather, the production 



of the signs was not tightly controlled, and they were 

gathered from a range of signers. Signers were instructed to 

produce signs naturally, enabling us to test a recognition 

algorithm trained on heterogeneous data. Through this 

study, we aim to provide insights into the relative difficulty 

and value of gathering ASL data from a small but wide 

sample of signers. 

 
Figure 1. Avatar teaching TEA sign in a virtual coffee shop. 

 

2. KEY CHALLENGES  

 

2.1. Dataset unavailability 

One major problem in the ASL recognition work is that sign 

datasets are not readily available for ASL, especially in VR 

environments. Some researchers focus on VR, but the 

datasets still need to mature [15]. Pugeault et al. published a 

dataset containing 131,000 ASL alphabet samples collected 

using the Kinect sensor, OpenNI, and NITE framework [9]. 

Similar datasets were published by Kapuscinski et al. [5]. 

Though the datasets are large, they are incomplete. For 

instance, one dataset includes only 24 characters of the ASL 

alphabet rather than all 26, and only static signs are included 

[17]. The ASL alphabet contains both static and dynamic 

gestures. ASL alphabet signs for J and Z contain dynamic 

motion; hence they are difficult to recognize with static 

information alone. In VR, hand gesture recognition is 

performed from the signer's perspective. These represent 

significant limitations of the available data. 

 

2.2. Lack of diverse and fluent signers 

Most existing ASL datasets for automatic sign language 

recognition have been collected from hearing participants 

with low or no proficiency in ASL [20]. New sign language 

learners typically struggle to produce accurate signs even 

after years of instruction, with particular errors in 

movement, location, and orientation of signs [13]. Training 

a model on signs from novice signers may run the risk of 

creating homogenous databases, which may contain signs 

produced in a limited manner--for example, producing the 

sign in the same location or with the same orientation for 

every instance of the sign. In the real world, ASL is used by 

people at many different proficiency levels, with different 

ways of producing signs, different spatial parameters, and 

different signing speeds. This natural variability may be one 

reason why the accuracy of most models’ falls in real-life 

applications. Robust and variable datasets collected from 

diverse signers are essential for accuracy in practically 

applied settings. 

 

2.3. Implementation difficulties 

Automated ASL recognition ideally involves capturing and 

computing hand, body, and gaze movements. However, 

computer vision approaches face several challenges, 

including occlusion, variable distance from the capturing 

device, lighting conditions, and color ambiguity. As a result, 

an ASL recognition system must be robust and able to 

categorize these nuanced variations in sign production 

accurately. 

Given these existing limitations in the field of ASL 

recognition, here we trained a VR ASL recognition system 

using highly-variable signed input. We opted to give signers 

the instructions to produce signs naturally, with the goal of 

testing a recognition algorithm trained on heterogeneous 

data. With this case study, we hope to clarify some of the 

challenges. 
 

3. METHOD 

 

In this work, we have employed the Oculus Quest 2 as a VR 

device and MiVRy [20] Unreal Engine plugin for hand 

detection segmentation, training, and testing on ASL 

numbers and a single ASL sign. This plugin is lightweight 

and easy to fit in the VR environment. As sign language or 

gesture recognition is relatively new research, related 

frameworks are not widely available. To our knowledge, 

MiVRy is the most optimal solution aligned with our 

requirements. This plugin is lightweight and easy to fit in 

the VR environment. The signers produced signs naturally, 

with no additional devices beyond the VR headset. We 

designed a user interface (UI) to navigate different functions 

and interact with the virtual textbox. The details are 

discussed in the following subsections. 

 

3.1. Data collection 

The UI is shown in Figure 2. Users can create their own 

dataset by tapping the gesture name text field. Also, the user 

can modify the gesture duration. Most of the past research 

projects in this area used a fixed gesture duration (although 

the duration varies from person to person); keeping this in 

mind, we gave more flexibility to the user. 

When the participant taps the “Record Stroke” button, the 

system starts tracking hands and joints for the specified 

gesture duration time. Next, participants need to tap on the 

“Train” button to store this gesture in the dataset. As soon as 

the “Train” button clicked, the system saved the gesture to 



the local storage and trained the network to detect the 

gesture using the MiVRy plugin. 

 

 
Figure 2. The UI of the ASL number data collection system 

in VR. 

 

3.2. ASL recognition 

The user interface (UI) during the recognition phase is 

similar to that used during data collection. Upon selecting 

the "Detect Gesture" button, the user sees the UI shown in 

Figure 3, providing users with options to choose different 

databases and similarity scores. The similarity score 

represents a threshold value that can be adjusted between 0 

and 100, with a higher score indicating a greater confidence 

in the recognition results. For instance, in Figure 3, a 

similarity score of 30 is set, indicating that the system will 

identify ASL numbers only if the recognition confidence 

score exceeds 30%. Higher values typically correspond to 

more accurate detection and identification. The DL model 

trained during the data collection phase is used for 

recognition, and the system dynamically allocates 

parameters to optimize performance for the current dataset. 

 

 
Figure 3. ASL number recognition UI. The detected gesture 

is shown in the right window with a confidence value. 

 

4. EXPERIMENTAL SETUP 

 

Figure 4 shows the original experimental setup. Participants 

wore the Oculus Quest 2 headset and signed ASL numbers 

0-10 and the ASL sign TEA. The TEA sign is relatively 

more complicated than numbers and is a two-handed sign 

prone to occlusion issue. The UI was visible both on the 

computer monitor and on the Oculus Quest 2 (software 

version 44.0.0.169.455). The UI was designed and 

developed using Unreal Engine 4.27 and MiVRy plugin 

v2.5 for gesture detection. The system ran on a Windows 11 

pro-64-bit operating system with 32GB of memory and an 

Intel Core i9 3.50Ghz clock speed processor. 

We designed the system to work with both left-handed and 

right-handed participants. Figure 3 shows the UI of our 

experiment. Participants were free to sign with different 

palm orientations and locations. 

 

 
Figure 4. Original experimental setup. Participants can see 

the UI in VR environments, and their view is mirrored on 

the computer.  

 

4.1. The dataset  

This experiment has two datasets: ASL number signs 0-10 

and the ASL sign TEA. The sign duration was fixed (three 

seconds) for all signs. The number dataset contains 2500 

ASL number signs, and the TEA dataset contains 500 signs, 

collected from 10 participants each. Every participant signed 

each ASL number (from 0-10, inclusive) 25 times, resulting 

in 250 signs from each participant. As the TEA is a single 

sign, participants signed TEA 50 times. Of the ten 

participants, seven were deaf, one was hard of hearing, and 

two were hearing. The TEA sign is a complex sign with an 

occluded hand where both hands are necessary. The purpose 

of this sign is to verify the model's robustness. We will 

include more complex signs in our future work. 

We recruited ten participants (four men and six women) 

with diverse backgrounds to train the system on highly 

variable signed input. The participants, ranging in age from 

22 to 46 years, came from various language backgrounds 

and had between seven months and 43 years of experience 

signing ASL. Five of the participants had been exposed to 

ASL since birth. By recruiting participants with varying 

language backgrounds and levels of ASL experience, we 

sought to enable the system to recognize a broad range of 

signing styles. 



5. RESULTS AND DISCUSSION 

5.1. ASL number dataset  

We tested the system ten times for each ASL number and 

found an average of 46% recognition accuracy; however, 

the result varies for different numbers. We plotted the 

results in a confusion matrix in Figure 5 (handshape figures 

are from the Noun Project created by Stephanie Leeson). 

We found different accuracy for different numbers with 

information revealed by the pattern of confusion. The 

highest and lowest recognition accuracy was found for TEN 

and SIX, respectively. 

 

Figure 5. Confusion matrix of the recognition accuracy. The 

user’s input is plotted in the vertical direction; the horizontal 

row represents the actual recognized ASL number. The 

highest and lowest accuracy is found for numbers 10 and 6. 

As shown in Figure 5, our results are informative of the 

typical confusion between similar handshapes. For instance, 

the ASL sign for SIX uses a handshape with three fingers 

up, and the recognition model often determines that the 

signer has produced a THREE (when in fact, they are 

signing SIX). Similarly, when the signer produced a 

SEVEN, it was often categorized as a TWO, given that the 

sign for SEVEN includes the pointer and middle finger 

raised, just like with a TWO. This pattern extends across 

several higher number signs; for instance, EIGHT was often 

recognized as ONE, and NINE was often recognized as 

ZERO. Thus, the confusion matrix suggests the location of 

the index finger is over-weighted, whereas the position of 

the ring and pinkie fingers was under-weighted. The false 

positive rate can be reduced by improving and implementing 

more complex DL-based algorithms. 

It is essential to note that TEN has the highest recognition 

accuracy, and it’s the only dynamic ASL number sign 0-10. 

Compared to other research, the proposed one is more 

accurate for the dynamic gesture [3], [4], [21]. Other 

researchers focused on image-based recognition, which is 

better for static gesture recognition. Instead, we focused on 

trajectory-based recognition. Most signed vocabulary is 

dynamic in real life; hence, we would expect higher 

recognition accuracy for other dynamic gestures. 

 

5.2. TEA sign dataset  

The TEA sign is a single sign; as a result, we cannot draw a 

confusion matrix. The average recognition accuracy for 

TEA was 55%. Occlusion plays a vital role in hand and 

palm orientation. The occluded finger sometimes incorrectly 

represents another finger, and it's a challenging task in 

computer vision research. The accuracy falls when there is 

an occlusion between fingers; without occlusion, the 

accuracy goes up to 70%. We expect a better algorithm will 

provide improved recognition accuracy in future iterations. 

 

6. CONCLUSION  

 

This work has significant practical applications for three 

main reasons. First, we intentionally captured highly 

variable sign language productions from a heterogeneous 

group of ASL users, including variations in hand usage, 

location, orientation, and movement trajectory. Moreover, 

this recognition system was trained in virtual reality without 

the use of specialized cameras or additional devices. This 

approach more closely approximates the real-world usage of 

sign-recognition systems, which are less constrained and 

highly variable. Second, the overall project team includes a 

majority of deaf members, and all team members know or 

are learning ASL. This lived experience provides a genuine 

connection to the language and community. Lastly, the 

system's typical confusion between ASL digits informs us of 

systematic patterns in the errors made by the algorithm. We 

acknowledge that the experimental data is limited to 10 

participants, a relatively small sample size. Future work in 

this area will improve the accuracy of the AI model and 

allow it to perform better in real-life situations. This work 

highlights that including the inherent variability of signed 

language production from the outset is critical for building 

systems tolerant of real-world variability and leading to 

better end products. Although initial results may be less 

"accurate" with more variable input, meaningful progress in 

this field takes time. Building systems tolerant of real-world 

variability is critical at all stages. With future work, we aim 

to train the algorithm and test different signs for use in the 

VR learning game environment. 
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