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Background
Advancement of speech synthesis
• Two-stage approach

• End-to-end approach

Text Intermediate
representation

(e.g., mel spectrogram)

Waveform
Neural vocoder

Text Waveform

Acoustic model

End-to-End

Common objective: High-quality speech synthesis
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Background
GAN [Goodfellow+2014]-based speech synthesis 
• Two-stage approach (e.g., HiFi-GAN [Kong+2020])

• End-to-end approach (e.g., VITS [Kim+2021])

Text Waveform

Text Waveform

Discriminator

Discriminator

Generator

Generator

Challenge: How to design an adequate discriminator?



3Copyright NTT CORPORATION

Challenge of GAN-based approach
Speech has multilevel (e.g., multiscale) structures

Short relationship

Long relationship

Discriminator must capture multilevel structures
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Previous study
An ensemble of discriminators was used

Discriminator

Discriminator

Discriminator

Multiscale discriminator
[Kumar+2019]

Discriminator
Reshape

2:T/2

Discriminator
Reshape

3:T/3

Discriminator
Reshape

5:T/5

Multiperiod discriminator
[Kong+2020]

Multilevel structures can be captured
Model size & computation time increase according to #discriminators

Resize 1/2

Resize 1/2
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Previous study
An ensemble of discriminators was used

Discriminator

Discriminator

Discriminator

Multiscale discriminator
[Kumar+2019]

Discriminator
Reshape

2:T/2

Discriminator
Reshape

3:T/3

Discriminator
Reshape

5:T/5

Multiperiod discriminator
[Kong+2020]

Multilevel structures can be captured
Model size & computation time increase according to #discriminators

Resize 1/2

Resize 1/2

Research question:
Can we replace an ensemble of discriminators 

with a single but expressive discriminator?
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Our solution
Wave-U-Net Discriminator

Wave-U-Net Discriminator

Real or fake
(sample-wise)

Multilevel structures can be captured via an encoder and decoder
#discriminators is one → Fast and lightweight

Encoder Decoder

Skip connections

Wave-U-Net [Pascual+2017, Stoller+2018], U-Net Discriminator [Schonfeld+2020]
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Method
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Previous discriminator
Encoder architecture (e.g., MelGAN [Kumar+2019], HiFi-GAN [Kong+2020])

Discriminator

Real or fake

Real/fake is determined using the abstracted features

Downsample
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Previous discriminator
Encoder architecture (e.g., MelGAN [Kumar+2019], HiFi-GAN [Kong+2020])

Real/fake is determined using the abstracted features
→ Multiple discriminators are required to capture detailed structures

Discriminator

Compensate for 
each other

Discriminator

Discriminator
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Wave-U-Net discriminator
Encoder-decoder architecture

Wave-U-Net Discriminator

Real or fake
(sample-wise)

Encoder Decoder

Skip connections

Real/fake is determined in a sample-wise manner
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Wave-U-Net discriminator
Encoder-decoder architecture

Wave-U-Net Discriminator

Real or fake
(sample-wise)

Encoder Decoder

Skip connections

Real/fake is determined in a sample-wise manner
→ One discriminator is sufficient to capture detailed structures

One discriminator
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Challenge in training
Unstable training of Wave-U-Net discriminator

Wave-U-Net discriminator is deeper than typical discriminator
→ Causes unstable training (saturate adversarial losses)

Discriminator Wave-U-Net Discriminator<
Deeper

Unstable training?
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Techniques for stable training 1
Careful normalization
• Global normalization

<latexit sha1_base64="oRtAmKBSMJSrlclOVE0mAaB6yKs="></latexit>
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features

Original
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Number of
features

ε = 10-8i-th feature
in a

Prevents Wave-U-Net Discriminator from restricting itself to specific features
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Techniques for stable training 2
Introduction of residual connections [He+2016]
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Prevents the gradient vanishing problem
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Experiments
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Validation items
1. Evaluation on neural vocoders

Dataset dependency was investigated
• Datasets:

› LJSpeech [Ito&Johnson2017]: Single English female speaker
› VCTK [Yamagishi+2016]: Multiple English speakers
› JSUT [Sonobe+2017]: Single Japanese female speaker

• Baseline: HiFi-GAN [Kong+2020]

2. Evaluation on end-to-end TTS
Task dependency was investigated
• Datasets: LJSpeech [Ito&Johnson2017]

• Baseline: VITS [Kim+2021]

Performance was examined
when the original ensemble of 

discriminators was replaced with 
a Wave-U-Net discriminator

Performance was examined
when the original ensemble of 

discriminators was replaced with 
a Wave-U-Net discriminator
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Evaluation metrics
Speech quality
• Subjective metric: MOS↑

› Mean opinion score on naturalness

• Objective metric: cFW2VD↓ [Kaneko+2022]

› Distance between real and synthesized speech in wav2vec 2.0 [Baevski+2020]

Training speed
• Time (s/batch)↓

› Time required for a discriminator to process real and synthesized speech in a batch

Model size
• # Param (M)↓

› Number of parameters of a discriminator
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Evaluation on neural vocoders
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Results 1/3
Evaluation on neural vocoder in LJSpeech
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Wave-U-Net discriminator reduces computation time & model size
while retaining speech quality
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Results 2/3
Evaluation on neural vocoder in VCTK
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Results 3/3
Evaluation on neural vocoder in JSUT
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Evaluation on end-to-end TTS
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Results
Evaluation on end-to-end TTS

MOS↑ cFW2VD↓ Time (s/batch) ↓
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Conclusion



25Copyright NTT CORPORATION

Conclusion
Objective
• Make a discriminator faster & more lightweight

Proposal
• Wave-U-Net Discriminator

Experiments
• Make a discriminator faster & more lightweight

while retaining speech quality

Future work
• Application to other tasks

› Singing speech synthesis, emotional speech synthesis, …

https://www.kecl.ntt.co.jp/
people/kaneko.takuhiro/
projects/waveunetd/

Audio samples

Wave-U-Net Discriminator

Real or fake
(sample-wise)

Wave-U-Net Discriminator


