

https://www.kecl.ntt.co.jp/ people/kaneko.takuhiro/ projects/waveunetd/

Wave-U-Net Discriminator:

Fast and Lightweight Discriminator for Generative Adversarial Network-Based Speech Synthesis

Takuhiro Kaneko ICASSP 2023

Hirokazu Kameoka

Kou Tanaka

Shogo Seki

Copyright NTT CORPORATION

Audio samples

٠

٠

Advancement of speech synthesis

Two-stage approach Neural vocoder Acoustic model Text Intermediate Waveform representation (e.g., mel spectrogram) End-to-end approach **End-to-End** Waveform Text

Common objective: High-quality speech synthesis

GAN [Goodfellow+2014]-based speech synthesis

• Two-stage approach (e.g., HiFi-GAN [Kong+2020])

• End-to-end approach (e.g., VITS [Kim+2021])

Challenge: How to design an adequate discriminator?

Challenge of GAN-based approach

Speech has multilevel (e.g., multiscale) structures

Discriminator must capture multilevel structures

Previous study

An ensemble of discriminators was used

Previous study

An ensemble of discriminators was used

Wave-U-Net Discriminator

Copyright NTT CORPORATION

Wave-U-Net [Pascual+2017, Stoller+2018], U-Net Discriminator [Schonfeld+2020]

Method

Previous discriminator

Encoder architecture (e.g., MelGAN [Kumar+2019], HiFi-GAN [Kong+2020])

Real/fake is determined using the abstracted features

Previous discriminator

Encoder architecture (e.g., MelGAN [Kumar+2019], HiFi-GAN [Kong+2020])

Real/fake is determined using the abstracted features→ Multiple discriminators are required to capture detailed structures

Wave-U-Net discriminator

Encoder-decoder architecture

Real/fake is determined in a sample-wise manner

Wave-U-Net discriminator

Encoder-decoder architecture

One discriminator

Real/fake is determined in a sample-wise manner → One discriminator is sufficient to capture detailed structures

Challenge in training

Unstable training of Wave-U-Net discriminator

Wave-U-Net discriminator is deeper than typical discriminator \rightarrow Causes unstable training (saturate adversarial losses)

Techniques for stable training 1

Careful normalization

Global normalization

Prevents Wave-U-Net Discriminator from restricting itself to specific features

Techniques for stable training 2

Introduction of residual connections [He+2016]

Prevents the gradient vanishing problem

Experiments

Validation items

1. Evaluation on neural vocoders

Dataset dependency was investigated

- Datasets:
 - > **LJSpeech** [Ito&Johnson2017]:
 - > VCTK [Yamagishi+2016]:
 - > **JSUT** [Sonobe+2017]:
- Baseline: HiFi-GAN [Kong+2020]
- Single English female speaker Multiple English speakers
- Single Japanese female speaker

2. Evaluation on end-to-end TTS

Task dependency was investigated

- Datasets: LJSpeech [Ito&Johnson2017]
- Baseline: VITS [Kim+2021]

Performance was examined when the original ensemble of discriminators was replaced with a Wave-U-Net discriminator

Evaluation metrics

Speech quality

- Subjective metric: MOS↑
 - > Mean opinion score on naturalness
- **Objective metric: cFW2VD**↓ [Kaneko+2022]
 - > Distance between real and synthesized speech in wav2vec 2.0 [Baevski+2020]

Training speed

- Time (s/batch) \downarrow
 - > Time required for a discriminator to process real and synthesized speech in a batch

Model size

- # Param (M)↓
 - > Number of parameters of a discriminator

Evaluation on neural vocoders

Evaluation on neural vocoder in LJSpeech

Evaluation on neural vocoder in VCTK

Evaluation on neural vocoder in JSUT

Evaluation on end-to-end TTS

Evaluation on end-to-end TTS

Conclusion

Conclusion

Objective

• Make a discriminator faster & more lightweight

Proposal

Wave-U-Net Discriminator

Experiments

 Make a discriminator faster & more lightweight while retaining speech quality

Future work

- Application to other tasks
 - > Singing speech synthesis, emotional speech synthesis, …

Wave-U-Net Discriminator

Wave-U-Net Discriminator

https://www.kecl.ntt.co.jp/ people/kaneko.takuhiro/ projects/waveunetd/

Real or fake

(sample-wise)

