Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

STATISTICAL ANALYSIS OF SPEECH DISORDER SPECIFIC FEATURES TO CHARACTERISE DYSARTHRIA SEVERITY LEVEL

Amlu Anna Joshy^{1,3}, P. N. Parameswaran^{1,3}, Siddharth R. Nair^{1,3}, Dr. Rajeev Rajan^{2,3}

¹ College of Engineering Trivandrum, Thiruvananthapuram, ²Government Engineering College, Barton Hill, ³ APJ Abdul Kalam Technological University, Kerala, India.

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

Contents

- 1 Introduction
- 2 Automated Dysarthria Severity Classification
- 3 Objectives and Motivation
- 4 Paraconsistent Feature Engineering
- 5 Speech Disorder Specific Features
 - Feature Description
 - Experimental Setup
- 6 Databases Used
- 7 Results and Analysis
 - Results using PFE Ranking
 - Results using Different ML Classifiers
- 8 Conclusion
- 9 References

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
•				

Introduction

Dysarthria:

- Neuro-motor speech disorder
- Occurs due to any neurological injury/neuro-degenerative disease
- Any of the speech production subsystems (respiration, phonation, resonance, prosody, and articulation) can be affected.
- Characterised by utterances having prolonged pause intervals, slow speaking rates, poor articulation of phonemes, syllable deletions, etc.
- Leads to poor intelligibility/ low audibility/ unnaturalness/ hyper-nasality/ weak facial reflexes/ harsh voice quality/ increased fatigue on speaking. [1].

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
0	•	00	0000	000

Assessment of Dysarthria Severity

- Identify severity level for proper medication and speech therapy during rehabilitation
- Speech examinations by a speech language pathologist (SLP) : biased, time-consuming, and expensive.
- Automation => "Mimic the human perception system"
- A classifier that establishes a mapping between the speech features and the severity labels (very low/low/medium/high) as determined during perceptual evaluation of speech intelligibility by an SLP.

o o ●O 0000 000	Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
	0	0	•0	0000	000

Objectives and Motivation

To comparatively study the prosodic, glottal, phonetic and articulatory features for ranking their efficacy in recognizing the dysarthria severity level.

- Our initial experiments using these speech disorder specific features on deep learning classifiers [2] suggested that a detailed statistical analysis is required to understand the potential correlation within each class.
- Enables a choice of the optimum feature descriptor that could be used by a simple predictor for aiding SLPs.

Introduction Au	utomated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
0 0		00	0000	000

Objectives and Motivation

To use the paraconsistent feature engineering (PFE) technique [3] for the analysis

- Can picture the intra-class similarities and the inter-class distinctions exhibited by the features.
- Has been shown to be efficient in feature ranking for applications such as replay attack detection [4] and speaker verification [5].

Paraconsistent Feature Engineering (PFE) [3]

Feature ranking method

- All the available X number of feature vectors are L2-normalized.
- Intra-class similarities analysed using α , the level of faith.
- Define A = max min within each class for each feature.
- Calculate Y = 1 A, for feature vectors of dimension D and an N-class problem.

$$\bar{Y}_N = \frac{1}{D} \sum_{i=1}^{D} y_N(i)$$
 (1)

$$\alpha = \min\left\{\bar{Y}_1, \bar{Y}_2, ..., \bar{Y}_N\right\}$$
(2)

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
			0000	

PFE Approach [3]

- Inter-class dissimilarities analysed using β , the level of discredit.
- Inter-class distinction analysed using range vectors, the degree of overlaps

$$\beta = \frac{R}{F} \tag{3}$$

where, $R = \text{count of features in one class lying within the range vector of all the other classes and <math>F = \text{maximum possible number of overlaps} = N.(N - 1).X.D.$

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
0	0	00	0000	000

PFE Approach [3]

FIGURE - Flowchart of the PFE approach reproduced from [3]

Amlu Anna Joshy CET

ICASSP 2023

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
			0000	
PFE F	Approach [3]			

- Degree of certainty G1 and degree of contradiction G2 define the paraconsistent plane
- Ideal case : linearly separable features : gives (1, 0).
- Distance D from the point P = (G1, G2) to the ideal point (1, 0) is calculated.

FIGURE - The paraconsistent plane reproduced from [3]

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Feature Desc	ription			
Featu	re Description			

Prosody Features

- Abnormal changes in pitch, loudness and time duration
- Prevent conveying the right emotion and rhythm to the speech
- Estimated in terms of mean pitch, jitter, shimmer, the proportion of the vocalic duration and the degree of voiced breaks
- 103 prosody features based on duration, fundamental frequency and energy computed [6]

Glottal Features

- Irregular glottal closure pattern and related breathy voice
- Glottal flow patterns characterised by nine different time-frequency parameters as in [7].
- Statistical measures applied => 36 features per utterance

Introduction O	Automated Dysarthria Severity Classification O	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Feature Desc	cription			
Featu	re Description			

Articulatory Features

- Retardation in the lip, tongue, and jaw movements => imprecise articulations
- 122 descriptors including the bark band energies, formants and mel-frequency cepstral coefficients(MFCCs) during the onset and offset transitions

Phonation Features

- Deteriorated voice quality in terms of stability and periodicity
- 7 phonation measures corresponding to the jitter and shimmer, amplitude and pitch perturbation quotients, glottal-to-noise excitation ratio, and harmonics-to-noise ratio, cepstral harmonics to noise ratio, and the normalized noise energy [8]

Introduction O	Automated Dysarthria Severity Classification O	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Experimental	I Setup			
Exper	imental Setup			

- The speech disorder specific features are extracted using the DisVoice python library¹ and the Kaldi toolkit.
- Static/utterance level features are computed
- Four statistical functions applied : mean, standard deviation, skewness, and kurtosis
- Concatenated vector : 655 dimension

^{1.} https://github.com/jcvasquezc/DisVoice

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

Databases Used

UA-Speech [9]

- Data of 15 cerebral palsy(CP) patients available.
- Utterances correspond to three repetitions of the 10 digits, 19 computer commands, 26 international radio alphabets, 100 common words and 300 distinct uncommon words.
- 465 common words and 300 uncommon words per speaker.

TORGO [10]

- Data from 8 dysarthric speakers with CP or amyotrophic lateral sclerosis (ALS) used.
- Dysarthric word utterances only used => 2227 available in total
- 80% for training and 20% for testing.

Severity	UA-Speech	TORGO
VERY LOW	F05, M08, M09, M10, M14	F03, F04, M03
LOW	F04, M05, M11	F01,M05
MEDIUM	F02, M07, M16	M01, M02, M04
HIGH	F03, M01, M04, M12	-

TABLE - Class-wise patient description

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Results using	PFE Ranking			

Results using PFE Ranking

FIGURE - Plots of different feature points in the paraconsistent plane (a) UA-Speech (b) TORGO

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
		00	0000	000
Results using	PFE Ranking			
Resul	ts using PFE Ranking	J		

TABLE - Paraconsistent framework on features (best values in bold)

-	UA-Speech			TORGO		
Feature set	α	β	D	α	β	D
Prosody	0.83	0.49	0.73	0.81	0.53	0.79
Articulation	0.97	0.74	1.05	0.97	0.78	1.11
Glottal	0.73	0.75	1.12	0.86	0.79	1.14
Phonation	0.49	0.75	1.27	0.45	0.79	1.36

- Prosody : P lies closest to the ideal point (1,0), hence best β and D values => inter-class dissimilarity is the greatest
- Articulation : highest α value => intra-class similarity is the greatest

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Results using	Different ML Classifiers			

Results using Different ML Classifiers

TABLE - Classification accuracy (%) obtained on different ML classifiers (best values in bold)

Database	Classifier	Phonation	Glottal	Prosody	Articulation
TORGO	SVM	62.88	55.60	60.18	83.18
	RF	69.14	76.45	81.49	85.65
	kNN	60.09	50.44	69.23	73.99
	NB	54.29	44.84	39.90	45.74
UA-Speech	SVM	60.81	55.91	61.68	77.98
	RF	65.82	70.86	67.72	77.64
	kNN	53.38	43.33	54.90	60.69
	NB	46.12	43.40	46.89	54.02

- Articulatory features gave the best results among subsets on all the classifiers, except NB.
- Same trend observed on deep learning classifiers in our previous experiments [2].
- Articulation deficits and reduced vowel articulation index efficiently mapped the stage of Parkinsons disease in [11]

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature	
Results using Different ML Classifiers					

Results of Feature Importance Calculation

- FIGURE Feature importance graph using permutation on the UA-Speech database(X-axis shows important features from each set)
 - Most discriminating feature = skewness of 2nd Bark Band Energy(BBE) on offset transitions.
 - BBEs reduced in dysarthics compared to healthy speakers [6].
 - Top four in articulatory feature set = MFCCs, affirming results of [12], [2].

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

Conclusion

Findings

- Prosody and articulation features are found to be best useful, which was supported by the classification accuracies obtained on using different ML classifiers.
- As previously reported in [2] and supported by the findings in [13], the classification accuracy does not improve with the mere increment in feature dimension.

Relevance of the Study

- Low resource of impaired speech data
- Extendable to other speech disorders like apraxia, and to specific cases of dysarthria like hypokinetic dysarthria exhibited by Parkinson's disease.
- Helps in implementing simple predictors based on ranking results without the problem of over-fitting, to aid SLPs.

Introduction O	Automated Dysarthria Severity Classification O	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Refere	ences I			
	R. Palmer and P. Enderby.			

Methods of speech therapy treatment for stable dysarthria : A review. *Int. J. Speech, Lang. Pathology*, pages 140–153, 2007.

Amlu Anna Joshy and Rajeev Rajan. Automated dysarthria severity classification : A study on acoustic features and deep learning techniques.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 :1147–1157, 2022.

Rodrigo Capobianco Guido.

Paraconsistent feature engineering [lecture notes]. IEEE Signal Processing Magazine, 36(1):154–158, 2018.

Ankur T Patil, Rajul Acharya, Hemant A Patil, and Rodrigo Capobianco Guido. Improving the potential of enhanced teager energy cepstral coefficients (etecc) for replay attack detection.

Computer Speech & Language, 72 :101281, 2022.

Introduction	Automated Dysarthria Severity Classification			
		00	0000	000
Potor	ancos II			

 Alex Marino Gonçalves de Almeida, Claudineia Helena Recco, and Rodrigo Capobianco Guido.
 Use of paraconsistent feature engineering to support the long term feature choice for speaker verification. *The International FLAIRS Conference Proceedings*, 34, Apr. 2021.
 Juan Rafael Orozco-Arroyave, Juan Camilo Vásquez-Correa, Jesús Francisco Vargas-Bonilla, Raman Arora, Najim Dehak, Phani S Nidadavolu, Heidi Christensen, Frank Rudzicz, Maria Yancheva, H Chinaei, et al. Neurospeech : An open-source software for parkinson's speech analysis. *Digital Signal Process.*, 77 :207–221, 2018.

Elkyn Alexander Belalcázar-Bolanos, Juan Rafael Orozco-Arroyave, Jesús Francisco Vargas-Bonilla, Tino Haderlein, and Elmar Nöth. Glottal flow patterns analyses for parkinson's disease detection : acoustic and nonlinear approaches.

In Proc. Int. Conf. Text, Speech, and Dialogue, pages 400-407. Springer, 2016

	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature
Refere	ences III			
	Tomas Arias-Vergara, Juai Orozco-Arroyave. Parkinson's disease and a			
	articulation of speech. Cognitive Computation, 9(
	Heejin Kim, Mark Hasegav Thomas S Huang, Kennett Dysarthric speech databas In Ninth Annual Conference Association, 2008.	h Watkin, and Sim	one Frame. cess research.	
	Frank Rudzicz, Aravind Ku The torgo database of aco dysarthria. Language Resources and	ustic and articulat	ory speech from speake	ers with
	Sabine Skodda, Wenke Vi Vowel articulation in parkir <i>J. Voice</i> , 25(4) :467–472, 2	nson's disease.	hlegel.	

ज्यायोध्य व

cific Feature

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

References IV

Amlu Anna Joshy and Rajeev Rajan.

Automated dysarthria severity classification using deep learning frameworks. In *Proc. 28th Eur. Signal Process. Conf.*, pages 116–120, 2021.

Henrik Holmström and Victor Zars.

Effect of feature extraction when classifying emotions in speech-an applied study. *Ph.D dessertation, Umeà University, Sweden,* 2018.

Introduction	Automated Dysarthria Severity Classification	Objectives and Motivation	Paraconsistent Feature Engineering	Speech Disorder Specific Feature

THANK YOU

