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ABSTRACT

Audio Spectrogram Transformer models rule the field of
Audio Tagging, outrunning previously dominating Convolu-
tional Neural Networks (CNNs). Their superiority is based
on the ability to scale up and exploit large-scale datasets such
as AudioSet. However, Transformers are demanding in terms
of model size and computational requirements compared to
CNNs. We propose a training procedure for efficient CNNs
based on offline Knowledge Distillation (KD) from high-
performing yet complex transformers. The proposed training
schema and the efficient CNN design based on MobileNetV3
results in models outperforming previous solutions in terms
of parameter and computational efficiency and prediction per-
formance. We provide models of different complexity levels,
scaling from low-complexity models up to a new state-of-the-
art performance of .483 mAP on AudioSet. 1

Index Terms— Audio Tagging, AudioSet, Patchout Au-
dio Transformer, MobileNetV3, Knowledge Distillation

1. INTRODUCTION

Audio Tagging (AT) is the task of assigning one or multi-
ple semantic labels to an audio clip. Until recently, CNNs
have dominated the field of AT [1, 2, 3]. CNNs are a well-
studied and understood architecture for processing spectro-
grams and include well-suited inductive biases such as the lo-
cality bias, weight sharing and translation equivariance. Ad-
ditionally, CNNs have a specific receptive field, which can
be controlled to optimize a model’s generalization capabili-
ties [4]. Efficient CNN designs have been proposed in the
vision domain [5, 6, 7, 8, 9] and proved successful also when
applied in the audio domain [2, 10].

Transformers [11] build on global attention and lack cor-
responding inductive biases resulting, for instance, in a learn-
able receptive field [12, 10]. While CNNs can learn complex
tasks given only a limited amount of data, Transformers show
their strength when large datasets are available [12, 13, 14].

Given the scale of AudioSet [19], Transformers have re-
cently outperformed CNNs and represent the new state of

1https://github.com/fschmid56/EfficientAT/

Fig. 1. Crosses denote models based on Transformer architec-
ture (Audio-MAE [15], HTS-AT [16], PaSST-S [17], PaSST-
S-L [17], AST [18], KD-AST [10]) and circles denote mod-
els based on CNNs (PSLA [2], ERANN-1-6 [3], Wavegram-
logmel-CNN [1], CNN14 [1], KD-CNN [10]). The gray and
green curves present width-scaled MobileNets [7] w/ and w/o
ImageNet pre-training using the proposed training schema.

the art in AT [18, 17, 16, 15]. However, Transformers are
complex in terms of parameters compared to CNNs, and the
global self-attention mechanism scales quadratically with re-
spect to the sequence length, making training and inference
slow, and the deployment on edge devices infeasible. In this
work, we take the best of both worlds by teaching efficient
CNNs from performant Transformer ensembles. Our pro-
posed models have around 10 times fewer parameters and
require 100 times fewer multiply-accumulate operations for
prediction than state-of-the-art transformers while matching
their performance.

The main contributions are (1) to provide highly effi-
cient AT models, both in terms of model size and inference
speed. The proposed models outperform existing, more com-
plex models and achieve a new single-model state-of-the-art
performance of .483 mAP (AP averaged over classes) on Au-
dioSet; and (2) to propose a framework for efficient Knowl-
edge Distillation (KD) from high-performance and complex
transformer models to smaller and more efficient CNNs.
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2. RELATED WORK

Efficient CNNs for Audio Tagging: Searching for efficient
CNN architectures for AT and scaling models has been inves-
tigated before [1, 3, 2]. Efficient vision architectures, such as
EfficientNets [8, 9] and MobileNets [5, 6, 7] have shown to
provide a good performance-complexity trade-off also in the
audio domain [1, 2, 10]. The latest versions of MobileNets [7]
and EfficientNets [9] are based on inverted residual blocks [6,
8], consisting of a pointwise expansion convolution followed
by a depthwise convolution and a pointwise projection convo-
lution operation. Squeeze-and-Excitation layers [20] are inte-
grated into the residual blocks to recalibrate filter responses.
By default, both EfficientNets and MobileNets derive the final
predictions by global pooling followed by an MLP classifier.
Audio Spectrogram Transformers: Inspired by the Vision
Transformer (ViT) [12], transformers capable of processing
images have been adapted to the audio domain. Vision and
Audio Spectrogram transformers [18, 17, 16, 15] extract over-
lapping patches with a certain stride and size of the input im-
age, add a positional encoding, and apply transformer layers
to the flattened sequence of patches. Transformer layers use
a global attention mechanism that leads to computation and
memory complexity scaling quadratically with respect to the
input sequence.
Knowledge Distillation in Audio Tagging: Knowledge Dis-
tillation (KD) [21] is a technique that allows low-complexity
models to learn from larger, better-performing teacher mod-
els. Besides the common classification loss, a distillation loss
based on the teacher’s predictions is minimized by the stu-
dent. Given student’s logits zS , teacher’s logits zT , the labels
y, an activation function δ and a weighting coefficient λ, KD
can be formulated as the weighted sum of label loss Ll and
distillation loss Lkd (see Eq. 1).

Loss = λLl(δ(zS), y) + (1− λ)Lkd(δ(zS), δ(zT /τ)) (1)

Learning from the teacher’s soft labels, possibly scaled by a
temperature τ , enables the student to exploit rich similarity
information between classes established by the teacher mod-
els [21]. Based on the results on multiple audio classification
tasks, Gong et al. [10] found that CNNs and Transformers are
well-suited teachers for each other, and simple KD based on
logits works better than more complex attention distillation
strategies.

3. EXPERIMENT SETUP

3.1. Dataset
We conduct our experiments on AudioSet [19], a dataset con-
sisting of over 2 million 10-second audio clips sampled from
YouTube and labeled with a set of 527 classes. AudioSet is
weakly labeled and an audio clip possibly contains more than
one label. AudioSet comes with an evaluation set consisting
of 20,383 recordings. Since AudioSet needs to be obtained
from YouTube, different proportions of the dataset can be

# PARAMs mAP

MN-Baseline 4.88M .401
MN-Baseline pre-trained 4.88M .417

MN-KD 4.88M .458
MN-KD pre-trained 4.88M .470

Table 1. MN performance on AudioSet[19] w/ and w/o KD
and pre-training on ImageNet [23].

successfully downloaded. In this regard, our setup is strictly
comparable to the dataset used to train PaSST models in [17].

3.2. Training Setup
We apply the same preprocessing as in [17]. We use mono
audio sampled at 32 kHz and compute Mel features from 25
ms windows with a hop size of 10 ms. Importance sampling
based on the label frequency is applied to counter the long tail
of infrequent classes.

Models are trained for 200 epochs. In each epoch, we
sample 100,000 samples without replacement from the full
AudioSet. The learning rate increases to its maximum value
8× 10−4 within the first 8 epochs and decreases linearly from
epoch 80 to epoch 175 to 1% of its maximum. We apply the
Adam optimizer and use a batch size of 120.

Mixup [22] with a mixing coefficient of 0.3 is used since
it has shown to improve performance on audio classification
tasks before [18, 4]. We apply Mixup at the spectrogram level
and mix the teacher soft labels accordingly. Since teacher
predictions are generated offline on unaugmented data, we do
not apply any further data augmentation methods.

4. KNOWLEDGE DISTILLATION

We use the efficient CNN MobileNetV3-Large [7] (abbrevi-
ated as MN in the following) as our student baseline model.
Table 1 shows that MN-Baseline falls short of previous CNNs
and Transformer models on AudioSet [19]. Pre-training on
ImageNet [23] builds a solid weights prior for pattern recog-
nition [16] and improves results, but the model is still inferior
to previous AT models. In this section, we explain how to use
KD to improve performance drastically.

For KD, we ensemble PaSST [17] models with different
patch sizes and strides as a teacher. We pre-compute the pre-
dictions of 9 different PaSST models2 on AudioSet to speed
up training and form an ensemble by averaging the logits. The
PaSST ensemble achieves a mAP of .495, which is state of the
art for ensembles on AudioSet.

With regard to the components of Eq. 1, we use Binary-
Cross-Entropy for both label Ll and distillation loss Lkd and
as activation function δ we apply Sigmoid activation. These
settings correspond to the natural choices for the AT task. λ
and τ are subject to experiments described in Section 6.

2Available at: https://github.com/kkoutini/PaSST/blob/
main/models/passt.py

https://github.com/kkoutini/PaSST/blob/main/models/passt.py
https://github.com/kkoutini/PaSST/blob/main/models/passt.py


Table 1 shows that using KD to teach a pre-trained MN
from a PaSST Transformer ensemble improves results sub-
stantially by matching the performance of a single state-of-
the-art PaSST model while reducing the model size to approx-
imately 6% of PaSST-S, which has 87 million parameters.

5. MODELS AT SCALE

In this section, we vary the model complexity and the spectro-
gram resolution to obtain models of different sizes and com-
putational complexities. We keep the number of layers con-
stant and scale the model’s width by multiplying the number
of channels by a scaling factor α. α = 1 is the default MN
(shown in Table 1), setting α < 1 and α > 1 produces models
of reduced or increased complexity, respectively. The result
is a range of models, starting from low-complexity models,
which target edge devices, to larger models that achieve a new
state-of-the-art performance on AudioSet [19].

Figures 1 and 2 show that our scaled models without Im-
ageNet [23] pre-training (named ‘MobileNet (width-scaled)’
in the figures) outperform previous AT models in terms of
efficiency and performance even without the need for pre-
training. However, pre-training a selection of models of
varying widths on ImageNet (named ‘MobileNet pre-trained
(width-scaled)’ in the figures) demonstrates that the perfor-
mance of our proposed models, especially the smaller ones,
can be further boosted with pre-training.

Parameter Complexity: Figure 1 shows that our scaled
models ranging from below 1 million to 68 million param-
eters compare favorably to other AT models in terms of pa-
rameter efficiency. Without pre-training, we need to scale up
the model to 16 million and with pre-training to 5 million
parameters to reach state-of-the-art performance. The three
largest models set a new state-of-the-art AT performance on
AudioSet, with the largest achieving a mAP of .483.

Computational Complexity: Complementary to the
model size, an important factor to consider about model
complexity is the number of multiply-accumulate operations
(MACs) required for classifying a single recording. Besides
the model width, the resolution of the spectrograms affects
the number of MACs. Figure 2 shows how varying hop size
(named ‘MobileNet (hop)’ in the figure), the number of mel
bands (named ‘MobileNet (mels)’ in the figure) and model
width (model sizes corresponding to Figure 1) influences
performance and required MACs. MACs are calculated for
linear, convolutional and attention layers, as these are the
dominating computational factors of the compared models.

Figure 2 shows that our proposed models compare favor-
ably against previous CNN solutions, for instance, PSLA [2]
or KD-CNN [10], which are based on EfficientNet-B2 [8].
State-of-the-art transformers, like PaSST [17], require a much
higher computational budget compared to CNNs. MN with
α = 1.0 uses approximately 100 times fewer MACs than
PaSST-S while achieving similar performance. Although the

Fig. 2. Comparison of model performances vs. computational
effort to predict a single sample. MobileNets with different
width (same as Figure 1), spectrogram resolutions (hop size
in [10, 15, 20, 25] ms and mels in [40, 64, 128, 256]) are com-
pared to other Audio Tagging models (PSLA [2], CNN14 [1],
ResNet38 [1], KD-CNN [10], PaSST-S [17]).

speedup in practice is very hardware-specific, we confirm our
theoretical analysis by benchmarking the inference through-
put of PaSST and our model on an Nvidia A100 GPU. We use
a batch size of 200 and obtain a throughput of 78 clips/sec. for
PaSST; for a similarly performing MN (α = 1.0) we get 4767
clips/sec., which corresponds to a 61 times speedup.

6. ABLATION STUDY

In this section, we discuss important model design choices
and hyperparameters of the training routine. All experiments
use the default MN with α = 1.0 and the official AudioSet
split [19]. In the following tables, cells highlighted in gray
mark the final hyperparameter choices our models are based
on.

6.1. Knowledge Distillation Hyperparameters
We apply KD with temperatures τ = 1 and τ = 3 to create
teacher soft labels and experiment with different weights λ to
trade off label and distillation loss (see Eq. 1). Table 2 shows
that the best results were obtained using a high distillation
loss weight in combination with τ = 1. However, switching
off the label loss Ll completely is counterproductive. Com-
pared to the baseline models in Table 1, using KD leads to a
consistent improvement across all configurations.

λ = 0.5 λ = 0.3 λ = 0.1 λ = 0.0

τ = 1 .454 .460 .464 .454
τ = 3 .455 .459 .457 .454

Table 2. Results of offline KD using different values for λ
(see Eq. 1) and temperatures τ = 1 or τ = 3 to create the soft
labels. Results are based on pre-trained models and a training
routine including data augmentation.



6.2. Data Augmentation and Consistent Teaching

Since we are using offline KD, the teacher predictions are
generated for the original AudioSet [19] clips before any data
augmentation. Additionally, it has been shown [10] that con-
sistent teaching [24] is beneficial. We experiment with the im-
pact of data augmentation and present the results in Table 3.
Switching off frequency and time masking leads to a perfor-
mance improvement, using Mixup [22] has a slight positive
performance impact and switching off rolling the waveform
over time and applying gain augment does not change results
significantly.

SpecAugment Sizes mAP

Augmented .464

−Masking .470
−Masking, −Rolling .470
−Masking, −Gain Augment .471
−Masking, −Gain Augment, −Rolling .470
−Masking, −Mixup .468

Table 3. Studying the impact of Data Augmentation in KD.
Masking refers to time and frequency masks as in SpecAug-
ment [25], Rolling rolls the waveform over the time axis, Gain
Augment changes the waveform’s amplitude by ±7 dB and
Mixup [22] is applied at spectrogram level.

6.3. Modified Squeeze-And-Excitation

Original Squeeze-and-Excitation (SE) [20] recalibrates the
filter responses based on channel weights computed from
combined channel statistics. We experiment with applying
the same SE mechanism based on frequency statistics to
recalibrate frequency bands.

The results in Table 4 show that SE-layers are an im-
portant architectural ingredient, in terms of performance.
Original channel-wise SE performs best but accounts for ap-
proximately 30% of the model’s parameters. We propose
frequency-wise SE as a lightweight alternative showing a
promising performance-complexity trade-off. Frequency-
wise SE only adds insignificantly to the model’s parameters,
as it does not scale with the network width, but improves
substantially over not using SE layers.

SE dimensions # PARAMs mAP

None 3.36M .453
Channel 4.88M .470

Frequency 3.37M .465

Table 4. Comparing the effect of using no, channel-wise or
frequency-wise Squeeze-and-Excitation layers in the student
network.

6.4. Different Types of Classification Heads
MobileNets come with global channel pooling and an MLP
classifier, whereas other popular classification heads in
the audio domain include multihead-attention [2] or fully-
convolutional architectures [4]. Table 5 shows that 4-headed
attention can improve slightly on the MLP classification head,
but this comes at the cost of substantially increasing the num-
ber of parameters. A fully-convolutional classification head
saves around 29% of parameters but results in a performance
reduction. The simple MLP classification head gives the best
performance-complexity trade-off.

Head Type # PARAMs mAP

MLP Classifier 4.88M .470
Fully-Convolutional 3.48M .465
Multihead Att. (2 heads) 5.00M .469
Multihead Att. (4 heads) 7.02M .471

Table 5. Results of the student network equipped with differ-
ent types of classification heads.

7. CONCLUSION

The outcome of this paper is an efficient and performant Au-
dio Tagging model that is easy to scale to given resource
constraints. Starting from low-complexity models that can
operate on resource-constrained platforms, the model can be
scaled up to reach a new state-of-the-art performance on Au-
dioSet, while being more efficient in terms of model size and
computational effort than previous solutions. Our proposed
models exploit the high performance reached by an ensem-
ble of heavy-weight transformers in our KD setup while hav-
ing the advantage of scaling linearly with increasing input se-
quence length. For future work, we plan to investigate the
performance of our proposed AudioSet pre-trained models on
downstream tasks and compare the quality of extracted em-
beddings to those extracted by Transformer models.
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