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1. Motivation 2. The Image Source model
Can one hear the shape of a room 7 The Room Impulse Response (RIR) is the pressure field p(r,t) resulting from an impulse
More precisely, given discrete filtered measurements of the source term in the wave equation with boundary conditions :
propagation from an impulse sound source to a microphone .
antenna, can we recover the locations of the walls? <( 612 thp(r, t) — Ap(r,t) = agdpsre (1)dg (1) r € () (1)
| n(r) - Vp(r,t) + ZB(r,t) * p(r,t) =0 r € 0f)
3. HypOtheseS In the framework of the image source model and when considering frequency indepen-
e Rectangular cuboid rooms dant walls, the pressure field in the room can be approximated by solving a free field,
; inhomogeneous equation [1]:
e Specular reflections .
— : : 1 H2 oC
o Ommdlrect.lonal sources and recewerso | s p(r,t) — Ap(r,t) = Z akOpere (1) S0 (t). (2)
Frequency-independent walls, floor, ceiling & —0 |
Fixed source and receiver responses: ideal low-pass e Fach image source corresponds to a sound reflec- - T _s}g L
filters tion path | : \ : :
One point source emitting a perfect impulse at t =0 e The image sources are constructed iteratively ~ =~~~ 7~~~ N T T T o
by taking successive reflections of the original | N ?@ n :
. o source with respect to the walls S T
4. What is Super-Resolution ? P T e o

The first order sources yield the geometry.

Objective: reconstruct a discrete measure ¥ = >, ayor,
from linear observations x = 'y = [ ~(r)dy(r) € R” |

observations

5. Image Source Recovery with Super-Resolution

o TR Idea: consider a relaxed convex op-

timization problem over the entire Consider the wave equation with source term 1:

space of Radon measures [2]| of R?: 1 52

5 7z P(rst) — Ap(r, t) = ¢(r)oo(?) (3)
c® Ot

min 1HX _ FW‘% + MYy (BLASSO) The multi-channel measurements x of p by the microphones are given by:
peEM(R3) 2 ——
data compliance regularization . i K (n/fs — HI',rnrilC — I‘H2 /C)
Tmn = (K*p(ry," )0/ fs) = mic _ Y(r) dr (4)
rcRs 47‘-Hrm I'HQ

7. Example of reconstruction where k : t — sinc(w fst) is an ideal low-pass filter.

One synthetic noisy RIR and its reconstruction In practice the sources remain at a minimum distance from the microphones and we define
0.015- | target RIR } the observation operator:
| reconstructed RIR
g . 3 ; M(N+1)
= 0.010- | 1= : M(Rs) R . (5)
g | | _ k(n/fs—|lr—r, “ll2/c)
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= A0 A LU U T R R R {*f i where M 1s the number of microphones, N + 1 the number of time samples and
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. S O T ource k-th iteration: let ¢ = ) ;" aj0,x (r; pairwise distinct):
© 0 @ g0 o icroph
® L@ oo ETOPTORER 1. Spike-findi Find r* ¢ L), nF(r) = 1D*(x — T*)(r)
5] © o o e e ool o image sources . Opike-finding. ind rf argmax,cgs [7x(r)|, My(r) = FI7(x Y7 )(r).
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5 o0 s s 8. Conclusion
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Reclall o%fer a RIR dat?iset }flor.vafying no}ilse ratios (%SNR)t,

sampling frequencies and spherical microphone array diameter : :

e qZSdB P - P 1 ? locations on synthetic data. The model and recovery method must be extended to non-
Z -@— X

—v—30dB w24 kHz —o— x3 —— Default rectangular, frequency dependant rooms and to unknown source and receiver responses to
— el 832 kHz A cover real applications.

We observe a high recovery rate of low order image sources and consequently of the wall
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Default parameters: noiseless, fs = 16kHz, d = 16.8cm




