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1. Motivation
Can one hear the shape of a room ?
More precisely, given discrete filtered measurements of the
propagation from an impulse sound source to a microphone
antenna, can we recover the locations of the walls?

3. Hypotheses
• Rectangular cuboid rooms
• Specular reflections
• Omnidirectional sources and receivers
• Frequency-independent walls, floor, ceiling
• Fixed source and receiver responses: ideal low-pass

filters
• One point source emitting a perfect impulse at t = 0

2. The Image Source model
The Room Impulse Response (RIR) is the pressure field p(r, t) resulting from an impulse
source term in the wave equation with boundary conditions :{
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c2

∂2

∂t2 p(r, t)−∆p(r, t) = a0δrsrc(r)δ0(t) r ∈ Ω
n(r) · ∇p(r, t) + ∂

∂tβ(r, t) ∗ p(r, t) = 0 r ∈ ∂Ω
(1)

In the framework of the image source model and when considering frequency indepen-
dant walls, the pressure field in the room can be approximated by solving a free field,
inhomogeneous equation [1]:
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∂2

∂t2
p(r, t)−∆p(r, t) =

+∞∑
k=0

akδrsrc
k
(r) δ0(t). (2)

• Each image source corresponds to a sound reflec-
tion path

• The image sources are constructed iteratively
by taking successive reflections of the original
source with respect to the walls

The first order sources yield the geometry.
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s2 s214. What is Super-Resolution ?
Objective: reconstruct a discrete measure ψ =

∑
k akδrk

from linear observations x = Γψ =
∫
r
γ(r)dψ(r) ∈ RD

observations
measure ψ Idea: consider a relaxed convex op-

timization problem over the entire
space of Radon measures [2] of R3:

min
ψ∈M(R3)

1

2
∥x − Γψ∥22︸ ︷︷ ︸

data compliance

+ λ∥ψ∥TV︸ ︷︷ ︸
regularization

(BLASSO)

5. Image Source Recovery with Super-Resolution
Consider the wave equation with source term ψ:

1

c2
∂2

∂t2
p(r, t)−∆p(r, t) = ψ(r)δ0(t) (3)

The multi-channel measurements x of p by the microphones are given by:

xm,n := (κ ∗ p(rmicm , ·))(n/fs) =
∫
r∈R3

κ
(
n/fs −

∥∥rmic
m − r

∥∥
2
/c
)

4π ∥rmic
m − r∥2

ψ(r) dr (4)

where κ : t 7→ sinc(πfst) is an ideal low-pass filter.
In practice the sources remain at a minimum distance from the microphones and we define
the observation operator:

Γε : M(R3
ε) −→ RM(N+1)

ψ 7→ x =
(∫

r∈R3
ε

κ(n/fs−∥r−rmic
m ∥2/c)

4π∥r−rmic
m ∥2

dψ(r)
)
1≤m≤M
0≤n≤N

(5)

where M is the number of microphones, N + 1 the number of time samples and
R3
ε = R3\

⋃
mB(rmic

m , ε), ε > 0.

6. Adapted Sliding Frank-Wolfe algorithm [3, 4]
k-th iteration: let ψk =

∑Nk

i aki δrki (rki pairwise distinct):

1. Spike-finding. Find rk∗ ∈ argmaxr∈R3
ε
|ηkλ(r)|, ηkλ(r) = 1

λΓ
∗(x − Γψk)(r).

If ∥ηkλ(r)∥2 ≤ 1, stop.

2. Amplitude optimization. Find ψk+1 =
∑Nk

i ak+1
i δrki + ak+1

Nk+1δrk∗ solving

inf
ak+1
i ≥0

1

2
∥x − Γψk+1∥22 + λ∥ψk+1∥TV.

3. Remove Dirac masses with zero amplitudes from ψk+1.

Last step (sliding): find ψ∗ minimizing locally the criterion wrt. (a, r) using as initial
point (akmax , rkmax).

7. Example of reconstruction
One synthetic noisy RIR and its reconstruction

0.02 0.03 0.04 0.05 0.06
t (s)

−0.005

0.000

0.005

0.010

0.015

pr
es
su
re
 v
ar
iat

io
n

target RIR
reconstructed RIR

3D image sources reconstruction

10
5

0
5

10
15 10 5 0 5 10 15 20

20

15

10

5

0

5

10

15

20 source
microphones
image sources
reconstructed sources

Recall over a RIR dataset for varying noise ratios (PSNR),
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Default parameters: noiseless, fs = 16kHz, d = 16.8cm
Recall thresholds : 2° angular error, 1cm radial error

8. Conclusion
We observe a high recovery rate of low order image sources and consequently of the wall
locations on synthetic data. The model and recovery method must be extended to non-
rectangular, frequency dependant rooms and to unknown source and receiver responses to
cover real applications.
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