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Problem formulation

Can one hear the shape of a room ?



Problem formulation

Can one hear the shape of a room ?
More precisely, given:

— an initial sound impulse (Dirac in time and 3D space)

— discrete-time, multichannel, low-pass measurements of the
room impulse response (RIR)

can we reconstruct the positions of the walls, floor and ceiling 7
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Image Sources
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(a) First and second order IS (b) 3D view of an IS point cloud

e the image sources contain the information about the acoustic
properties of the room

e in particular, room geometry is given by the locations of the
source and the first order image sources



Model

Using the image source model [2], the approximated pressure
field p(r, t) is solution to an inhomogeneous free-field wave
equation given by :
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Model

Using the image source model [2], the approximated pressure
field p(r, t) is solution to an inhomogeneous free-field wave
equation given by :
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The general solution of 1 is glven by:

Zak Hr_rsrc”z/c). (2)
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Model

Using the image source model [2], the approximated pressure
field p(r, t) is solution to an inhomogeneous free-field wave
equation given by :

1 0 -
gwp(r, t) — Ap(r,t) = Z ago (r — %) o(t) (1)

The general solution of 1 is glven by:

Zak Hr_rsrc”z/c). (2)

4 [|r — r<ll

Hypotheses:
rectangular cuboid rooms
frequency-independent walls, floor and ceiling
omnidirectional sources and receivers
specular reflections
one point source emitting a perfect impulse at t =0
@ fixed source and receiver responses: ideal low-pass filters
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2. Image source reconstruction



Super-resolution : general formulation




Super-resolution : general formulation

— measure y
—— observations (y)

e we want to reconstruct a
d-dimensional measure
Y =3 aidy,

e we only have access to a vector of
observations via a linear operator
I (with kernel ) :

x =T() = [,1(r)di(r) € RN

Figure: Example of 1D
measure and its observation



Super-resolution : general formulation

— measure y
—— observations (y)

e we want to reconstruct a
d-dimensional measure
Y =3 aidy,

e we only have access to a vector of
observations via a linear operator
I (with kernel ) :

x=T() = J,7(r)dy(r) € RV

Figure: Example of 1D
measure and its observation

Idea: consider a relaxed optimization problem over the entire
space of Radon measures [3] of RY:

in =|x—T 240\ BLASSO
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Room Response

We start by relaxing the source distribution in space:
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Room Response

We start by relaxing the source distribution in space:
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(r,t) = Ap(r, t) = 9(r)i(t) (3)



Room Response

We start by relaxing the source distribution in space:

S T bl t) — Bp(r, 1) = V()3 (1) (3)

For a given source distribution 1, the solution to the wave
equation (3) is given by

o= [ P12/ g @
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Room Response

We start by relaxing the source distribution in space:
1 92
2 2P
For a given source distribution 1, the solution to the wave
equation (3) is given by

o= [ P12/ g @

4 [|r — ']l

(r,t) = Ap(r, t) = 9(r)i(t) (3)

The multi-channel response x measured by the microphones is:

s = (rep(ee (/) = [ 2O Il )

reR3 4 ||rmic — rll,

P(r) dr

(5)
where k : t > sinc(rnfst) is the ideal low-pass filter at the
microphones frequency of sampling.



The multi-channel response measured by the microphone x is:

r(n/fs — [lrm = rll5 /<)

P(r) dr
(5)

X = (rxp (5, )0/ £) = [

reRr3 Am [[rpic —r||,
We define the linear operator

M(R?) — RNxM
I w(nj/fs—=|lr—rimicll2/c)
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1<j<NxM

(6)



The multi-channel response measured by the microphone x is:

r(n/fs — [lrm = rll5 /<)

X = (rxp (5, )0/ £) = [

reRr3 Am [[rpic —r||,
We define the linear operator

M(R3) — RNxM
r: Ky /fa—llr=rie2/ <)

(U =X = (freR-’» arllr—rmelz d1/1(r)>

1<j<NxM

(6)

In particular, if ¢ = Z/’f:o Ak Opsre (the measure defined by the
image sources), x = ['(1)) is the multichannel RIR.
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3. Numerical resolution
1. Adapted Sliding-Frank-Wolfe algorithm
2. Experiments and results



Adapted Sliding-Frank-Wolfe algorithm [1]

} ‘ l Algorithm:
1 e find a new source by maximizin
' H* hp m MW % Tcr i 1r(x — rwk)b(yr) :

e optimize over the amplitudes a,

Last step:

local non-convex optimization
of the cost function with
regards to the amplitudes and
positions (ax, Yk )k

Iteratlcn 1

..-.. S



Experiments

Simulated experimental setup:

compact spherical array of 32 microphones (scaled eigenmike
with radius 4.2cm, 8.4cm, etc.)

random room sizes (2 X 2 x 2m— 10 x 10 x 5m), random
sources and microphone locations

e synthetic noisy RIR cut at 50ms for the observations
e study the impact of the sampling frequency, the noise, the

array radius




Numerical results
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Figure: Recall over a room dataset for varying noise ratios (PSNR),
sampling frequencies and spherical microphone array diameter
Default parameters: noiseless, f; = 16kHz, d = 16.8cm



Conclusion

The proposed method offers significant advantages for room
geometry reconstruction :

e gridless, direct estimation of continuous 3D source positions
from discrete RIRs

e high precision recovery of low order image sources

e robustness to noise

e requires no prior information on the room properties



Conclusion

The proposed method offers significant advantages for room
geometry reconstruction :

e gridless, direct estimation of continuous 3D source positions
from discrete RIRs

e high precision recovery of low order image sources

e robustness to noise

e requires no prior information on the room properties
Some of the areas that remain to explore :

e estimating room parameters

e generalization to non-rectangular room shapes

e application to real data

e joint estimation of the source-microphone response ...
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