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Problem formulation

Can one hear the shape of a room ?

More precisely, given:
→ an initial sound impulse (Dirac in time and 3D space)
→ discrete-time, multichannel, low-pass measurements of the

room impulse response (RIR)
can we reconstruct the positions of the walls, floor and ceiling ?
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Image Sources
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(b) 3D view of an IS point cloud

• the image sources contain the information about the acoustic
properties of the room
• in particular, room geometry is given by the locations of the
source and the first order image sources
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Model

Using the image source model [2], the approximated pressure
field p(r, t) is solution to an inhomogeneous free-field wave
equation given by :

1
c2

∂2

∂t2 p(r, t)−∆p(r, t) =
∞∑

k=0
akδ (r− rsrc

k ) δ(t) (1)

The general solution of 1 is given by:
p(r, t) =

∞∑
k=0

ak
δ
(
t − ‖r− rsrc

k ‖2 /c
)

4π
∥∥r− rsrc

k
∥∥

2
. (2)

Hypotheses:
1 rectangular cuboid rooms
2 frequency-independent walls, floor and ceiling
3 omnidirectional sources and receivers
4 specular reflections
5 one point source emitting a perfect impulse at t = 0
6 fixed source and receiver responses: ideal low-pass filters
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Super-resolution : general formulation

• we want to reconstruct a
d-dimensional measure
ψ =

∑
i aiδri

• we only have access to a vector of
observations via a linear operator
Γ (with kernel γ) :
x = Γ(ψ) =

∫
r γ(r)dψ(r) ∈ RNobs

measure 
observations ( )

Figure: Example of 1D
measure and its observation

Idea: consider a relaxed optimization problem over the entire
space of Radon measures [3] of Rd :

min
ψ∈M(Rd )

1
2‖x− Γ(ψ)‖22︸ ︷︷ ︸
data compliance

+ λ‖ψ‖TV︸ ︷︷ ︸
regularization

(BLASSO)
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Room Response

We start by relaxing the source distribution in space:
1
c2

∂2

∂t2 p(r, t)−∆p(r, t) =
∞∑

k=0
akδ (r− rsrc

k ) δ(t) (1)

1
c2

∂2

∂t2 p(r, t)−∆p(r, t) = ψ(r)δ(t) (3)

For a given source distribution ψ, the solution to the wave
equation (3) is given by

p(r, t) =
∫

r ′

δ (t − ‖r− r′‖2 /c)
4π ‖r− r′‖2

ψ(r′)dr′. (4)

The multi-channel response x measured by the microphones is:

xm,n := (κ∗p(rmic
m , ·))(n/fs) =

∫
r∈R3

κ
(
n/fs −

∥∥rmic
m − r

∥∥
2 /c

)
4π ‖rmic

m − r‖2
ψ(r) dr

(5)
where κ : t 7→ sinc(πfst) is the ideal low-pass filter at the
microphones frequency of sampling.
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The multi-channel response measured by the microphone x is:

xm,n := (κ∗p(rmic
m , ·))(n/fs) =

∫
r∈R3

κ
(
n/fs −

∥∥rmic
m − r

∥∥
2 /c

)
4π ‖rmic

m − r‖2
ψ(r) dr

(5)
We define the linear operator

Γ :
M(R3) −→ RN×M

ψ 7→ x =
(∫

r∈R3
κ(nj/fs−‖r−rmic

mj ‖2/c)
4π‖r−rmic

mj ‖2
dψ(r)

)
1≤j≤N×M

(6)

In particular, if ψ =
∑K

k=0 akδrsrc
k

(the measure defined by the
image sources), x = Γ(ψ) is the multichannel RIR.
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Adapted Sliding-Frank-Wolfe algorithm [1]

Algorithm:
• find a new source by maximizing

r 7→ 1
λΓ∗(x− Γψk)(r)

• optimize over the amplitudes ak

Last step:
local non-convex optimization
of the cost function with
regards to the amplitudes and
positions (ak , rk)k
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Experiments

Simulated experimental setup:
• compact spherical array of 32 microphones (scaled eigenmike

with radius 4.2cm, 8.4cm, etc.)
• random room sizes (2× 2× 2m→ 10× 10× 5m), random

sources and microphone locations
• synthetic noisy RIR cut at 50ms for the observations
• study the impact of the sampling frequency, the noise, the

array radius
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Numerical results

Figure: Recall over a room dataset for varying noise ratios (PSNR),
sampling frequencies and spherical microphone array diameter
Default parameters: noiseless, fs = 16kHz, d = 16.8cm
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Conclusion

The proposed method offers significant advantages for room
geometry reconstruction :
• gridless, direct estimation of continuous 3D source positions

from discrete RIRs
• high precision recovery of low order image sources
• robustness to noise
• requires no prior information on the room properties

Some of the areas that remain to explore :
• estimating room parameters
• generalization to non-rectangular room shapes
• application to real data
• joint estimation of the source-microphone response κ . . .
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