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Unmanned Aerial Vehicles (UAVs)

* Applications — search and rescue (SAR) operations, disaster management, remote sensing, traffic monitoring, war reporting, surveillance in military
and airline operations

* Proliferation — serious security threat, privacy concerns

* Research gaps — efficient target localization and tracking in multitude of environmental and topographical conditions, dynamic backgrounds

Challenges in Drone Localization and Tracking

* Unfavorable topographical conditions — long-range target detection, uneven illumination, weak background contrast, environmental distortions, close
resemblances to birds — higher probability of false alarms

Existing Methods for Target Localization and their Limitations

* Multimodal approaches — radar, radio frequency (RF), acoustic sensing and Lidar

Limitations — expensive, energy inefficient, not being deployable in noisy environments, sophisticated infrastructure for integration with UAV's

Fail to differentiate between drones and birds at long ranges

Do not achieve robust drone localization under extreme topographies, low visibility conditions and distorted environmental scenarios

Computer vision and video analytics — promising modality, low visibility and unfavorable conditions, dynamic backgrounds
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Saqgib, M et. al, “A Study on Detecting Drones Using Deep Convolutional Neural Networks,” In Proceedings of the 2017 14™ IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August — 1 September 2017, pp. 1 - 5.

Transfer learning approach, combination of CNN and VGG-16, VGG-16 along with Faster R-CNN outclassed other networks - MPEG4 coded videos
with drones

Shi, Q et. al, “Objects Detection of UAV for Anti-UAV Based on YOLOv4,” In Proceedings of the 2020 IEEE 2" International Conference on Civil
Aviation Safety and Information Technology (ICCASIT), Weihai, China, 14 — 16 October 2020, pp. 1048 — 1052.

YOLOv3 and YOLOvV4 compared for UAV detection at low altitudes, YOLOv4 reported to have higher accuracy and inference speed — custom dataset
consisting of three different categories of drones namely: DJI-Phantom, DJI-Inspire, XIRO-Xplorer

Liu, H et. al, “Real-Time Small Drones Detection based on Pruned YOLOvV4,” Sensors 21, no.10: 3374, 2021.

Pruning of YOLOV4 architecture — thinner and shallower, pruned version of YOLOv4 with a channel prune rate of 0.8 and 24 pruning layers - mAP
score of 90.5%, improvement of 60.4% in processing speed

B. Taha et. al, “Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research,” in IEEE Access, vol. 7, pp. 138669- 138682,
2019

Drone detection and classification using machine learning algorithms with different modalities like radar, visual, acoustic, and radio-frequency sensing
systems — accuracy of machine learning algorithms trained on visual technologies (images/videos) — significantly better than other modalities
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Sparse Ensemble Tracker Network (SETNET)

1. Distinct Features

* Ensemble of base YOLOvV5 networks (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5]L, YOLOvV5X)

* Model compression — static pruning and quantization

* Model optimization — hyper-parameter evolution-based genetic algorithm — to improve model generalization
* Model ensembling — non-maximum suppression algorithm

* Tracker network — Contrastive Language Image Pre-training (CLIP)-based zero shot drone tracking algorithm — assigns a unique
ID to drones spotted in video instances, helps track them using feature similarity

2. Benchmark Evaluation

* An overall improvement in small target localization and robust trajectory tracking

* Five-fold improvement in inference speed — suitable for real time deployment in resource constrained environments
* Evaluated under a range of background distortions and scenarios

* Compared with several state-of-the-art algorithms — outperforms both in terms of accuracy of localization and inference speed
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Figure 1: SETNET architecture
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Drone and Bird Dataset

Extensive dataset — Birds, different categories of drones such as quadcopters, hexa-rotors, octa-rotors curated from several sources

Table 1: Dataset description

#Ex »

2 Snus i Parameter
Considered

Number of

classes

Data split ratio | 70:10:20 (train:validation:test)

8.
4"‘4'3165"

Description

2 (Drone and Bird)

Preprocessing | Auto orient, static crop and image resize

Flips (horizontal and vertical), mosaic, neural style
Augmentation | transfer, rotation, gamma correction, contrast
stretching, histogram equalization

Image size 640 x 640
s | | Environmental | Hilly regions, thick forest cover, uneven illumination,
(Vil) (Vlll) Factors cl_oudy sky, f(:‘)g and mist ‘ _
Single class in a frame, multiple classes in a frame,
Scenarios objects far-off from the FoV of the source camera,
Figure 2: (i) targets at long range (ii) targets camouflaged by clouds (iii) low visibility due to mist (iv) swarm of drones and bi_l'dS _
targets camouflaged by background tree cover (v) uneven illumination (vi) unfavorable topography Distortions Salt and Pepper noise, Gaussian blur, camera

distortions, AWGN

(vii) bird resembling a drone (viii) swarm of drones and birds
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Data Augmentation

Data augmentation: image flip, rotation by various angles, gamma corrections, contrast stretching, histogram equalization, mosaic-based augmentation,
neural style transfer algorithms.

Mosaic - enrich the level of background features in images, localize the target at various scales, four different samples from the training set are randomly
combined to form a single image, variations at different scales, increase in batch size without an increase in computational complexity

Neural stye transfer algorithm — improve network’s performance under domain variations. To ensure that the content image and style image are combined
efficiently, the loss function in Eq. 1 is optimized.

lossiotal = alOSScontent + Blossstyle (1)

where a and 8 are the coefficients weighing content loss and style loss respectively

loSScontent - L2 norm between the content features of the ground truth image and the generated image
l0sSg;y1e - Frobenius norm between the gram matrices of the generated and the ground truth image

Initial dataset — 3100 images of drones and birds
Data augmentation — seven-fold increase (22,000 images)

Data split — train (70%), validation (10%) and test (20%) set
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Benchmark Evaluation of YOLO Models

Table 2: Comparison of YOLO models (end of 500 epochs)

RHODES ISLAND, GREECE

Model Precision Recall mAP Object | Class fps
Loss Loss

YOLOVS 0.8765 0.9032 0.941 0.0252 0.001 123

YOLOvV6 0.5231 0.5721 0.855 0.4506 0.646 246

YOLOV7 0.7103 0.6620 0.669 0.0387 0.002 252

* YOLOVS5 outperforms YOLOvV6 and YOLOV7 in terms of precision, recall and mAP score — comparable inference speed (fps)

* YOLOv6 and YOLOv?7 present a higher inference speed measured using a NVIDIA Tesla T4 GPU - low classification accuracy

* YOLOV5 - negligible class and object losses — quantifies the model’s ability to differentiate between the classes

RAMAIAH

Institute of Technology

* Model training specifications — Leaky ReLU activation function for middle layers, Sigmoid activation function for final layers, Adam optimizer, Binary

Cross Entropy loss function
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Hyper-parameter Evolution Optimization
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Figure 3: Hyperparameter evolution at the end of 300 generations

* Initialization - initial population containing N, vectors created with random parameter values

* Mutation — For each N, vector, a mutant vector is calculated by randomly choosing parameters from the population and each vector’s parameter value is computed as a mutation of
these randomly chosen parameters. Each parameter p; of the mutant vector is given by (Eq. 2):

Pi(mutated) = Pi(best) T F- (pi(rl) — pi(rz)) (2)

* Mutated parameter — variation of p; of the best vector with the lowest value along with a dot product of the mutation rate F and p; difference of two vectors randomly
chosen, rq and 1.

* Recombination — A temporary vector holds either the current vector or the mutant vector. For each of these mutated parameters, a uniform random number R is generated in the (0, 1)
interval. If a particular recombination rate is greater than R, the mutant parameter is acceptable else, the parameter of the current vector is used.

* Replacement — The temporary vector is evaluated for its stability by comparing its function value with the current vector. If it is more stable than the current one, the current vector is
substituted for the temporary vector.
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Sparsity and Model Compression

Model pruning can be viewed as optimizing the pruned network L by minimizing N,, as in Eq. 3

arg min (L) = N(x; W) — N,(x; W) (3)
p

where N,(x; W) = P(N(x;W))

where N represents the complete neural network with X as the input, L denotes the pruned network with loss in performance given by N, in comparison to the unpruned
network. The pruning function, P(-) represents a compressed network N, with the pruned weights W,.

The quantization step adopted can be formulated as in Eq. 4.

Xq=f(sxgX;)+2) (4)

where s is a scalar, g(+) is the clamp function applied to floating-point values X,., Z is the zero-point to adjust the true zero in asymmetrical conditions and f(+) is the
rounding function. The clamping function adopted to quantize the floating point values is as given by Eq. 5.

clamp(x, a, ) = max(min(x, ), a) (5)
where & and f represent the bounds for the minimum and maximum values of the parameters respectively.

Deep Sparse — sparsity aware runtime is considered for performance analysis of the models’ inference speed
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Analysis of Sparse YOLOv5 Models and Network Training

Model Layers Precision mAP Total fps (w“h?“t ips

- Loss compression) (sparse)
YOLOvV5n 214 0.921 0.925 0.006 139 606
YOLOVSs 214 0.876 0.941 0.005 123 578
YOLOvV5Sm 291 0.974 0.947 0.005 84 415
YOLOv5I 368 0.978 0.942 0.004 43 203
YOLOv5x 445 0.939 0.939 0.003 22 110

The total loss is calculated as the sum of box loss, class loss and object loss as given in Eq. 6.

lossiotal = lpox t+ leiass + lobject

The box loss is shown in Eq. 7.

. 2 . 2 -2 __ i\ 2
lossbox = )'coordinate Zfio Z]l?:O I?,jb'(z — Wihi) (xi - 'i\'l]) + (yi — y\i]) + (Wi - w\l]) + (hi - hi]) ]

where A pordinate 1S the coefficient of position vector, I g]- is a variable that holds binary values (0 or 1). If the detected target is inside the anchor box (i, j), then it has a value of 1 else 0.

The penalty function when the network fails to determine the classes accurately is as shown in Eq. 8.

2 —
lossclass = )'class Z?':O Zf:o I?,j ZcEclass pi(c) log(pi(c))

A

class

The object loss is computed as given in Eq. 9.

2 _ =~ \2 2 = \2
lOSSObjeCt = Ano—o Z?':O Z]'Bz() I?JO O(Ci - Cl) + ).0 Zfzo Z}io I?,](Cl - Cl)

where 4,,,_, is the coefficient of object loss.
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Non-Maximum Suppression Ensemble Network

Model ensembling — stacking five different versions of YOLOV5 using non-maximum suppression (NMS) algorithm

si(1—10U(M, b)) 1oU(M,b;) = N,

B — list of initial detection box proposals from each of these models, N — NMS threshold. A proposal from B with the highest confidence score is selected and added to an empty list

b;. Intersection over Union (IoU) is calculated for the selected proposal with every other proposal in the list M. If IoU > N,this proposal is removed from the list, process is continued
until no proposals remain in B. The final confidence score is computed as given in Eq. 10.

Zero Shot Drone Tracking

* Instance identification using feature similarity across frames
* Contrastive Language Image Pre-training (CLIP) network — detection proposals from the sparse ensemble network
* Deep Learning-based Simple Online Realtime Tracking (Deep SORT) network — tracking instances across frames, assigning unique RelD embeddings for every distinct object spotted

in a frame
Ensemble Network Image J
Backbone Similarity L e -
Drne Tracker with ID

C = classification, B = box regression, R = RelD embedding
Figure 4: Zero shot drone tracking
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L

(ii) (111)

(v)

(vi)

Figure 6: Detection outcomes under unfavourable environmental entities

(vii)
Figure 5: Comparison of individual YOLO models with ensemble network (i) YOLOv5n (0.52) (ii) (i) multiple targets at long range from the viewpoint of the camera source (ii)
YOLOv5s (0.76) (iii) YOLOv5sm (0.76) (iv) YOLOvs51 (0.77) (v) YOLOv5x (0.78) (vi) Ensemble multiple targets under background irregularities (iii) small targets in clear sky (iv)
network without compression (0.57,0.68) (vii) SETNET (0.57,0.68) drone camouflaged by background entities (e.g., building) (v and vi) drone in hilly

region with low visibility

* Figure 5 — Two drones (left) and a single bird (right)

* Confidence of drone localization systematically increases from YOLOv5n to YOLOv5x (indicated in parentheses)

* Models (i) - (v) individually do not possess the capability of localizing both the drones that are present in the image on the left

* The ensemble network (vi) and SETNET (vii) successfully localize both the target drones although the targets are extremely far-off from the viewpoint of
the camera
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Table 4: Comparison of ensemble network with and without compression

p ¢ Ensemble network SETNET
arameter (without compression) (with compression)
1 Drone class (0.68) Drone class (0.68)
Confidence Score Bird class (0.86) Bird class (0.86)
Inference Speed 83 fps 419 ps

* Ensemble network vs SETNET: similar confidence of detection, SETNET achieves five times higher inference speed
* Highly suitable for deployment in edge computing and resource constrained environments

w— YOLOVSN
— YOLOVSS
w— YOLOVSM
w— YOLOVSI
\ w— YOLOVSX
\ w— Ensemble Network
e SETNET

— YOLOVSn
— YOLOVSs 06 {
s YOLOVSM 4
— YOLOVSI g \
— YOLOVSx ~
— Ensemble Network

SETNET

100 200 300 200 500 00 02 24 06 08 10
Epachs Confidence Score

(1) (1)
Figure 7: (i) IoU variation with epochs (ii) F1 score variation with confidence score

SETNET outperforms other models — higher Intersection over Union (IoU) score

Superior ability to localize targets accurately that is close to the ground truth
SETNET achieves higher F1 score for a given confidence threshold - confidence score of 0.7 yields the maximum F1 score of 0.923
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* SETNET achieves robust small target localization — extensively evaluated under a variety of environments and scenarios with
distortions

* Accounts for dynamically changing environment and topographical conditions, localizes and tracks small targets under extremely
low visibility conditions

* Achieves real time drone tracking - CLIP-based zero shot tracking framework
* A superior five-fold increase in inference speed — sparsity in the ensemble network
* Extended to infrared images — image fusion approaches for drone localization and tracking (multimodal learning)

* Implement - real-time surveillance systems (military operations) in resource constrained environments and edge compute devices
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