
IEEE SIGNAL PROCESSING LETTERS 1

Coherent long-time integration and Bayesian
detection with Bernoulli track-before-detect
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Abstract—We consider the problem of detecting small and
manoeuvring objects with staring array radars. Coherent pro-
cessing and long-time integration are key to addressing the
undesirably low signal-to-noise/background conditions in this
scenario and are complicated by the object manoeuvres. We
propose a Bayesian solution that builds upon a Bernoulli state
space model equipped with the likelihood of the radar data cubes
through the radar ambiguity function. Likelihood evaluation in
this model corresponds to coherent long-time integration. The
proposed processing scheme consists of Bernoulli filtering within
expectation maximisation iterations that aims at approximately
finding complex reflection coefficients. We demonstrate the effi-
cacy of our approach in a simulation example.

Index Terms—Bernoulli filter, coherent detection, long-time
integration, staring-array radar, track-before-detect.

I. INTRODUCTION

Detection of small and highly manoeuvrable craft with
radars has been an increasingly sought after capability in many
civilian and security contexts, e.g. detection of micro uncrewed
air vehicles (micro-UAVs, or drones) in air traffic manage-
ment [1] and small boats in maritime situational awareness
applications [2], [3]. The small radar cross-sections of such
objects result in very low signal-to-background and/or thermal
noise ratios at the receiver array. Integration of the reflected
energy over time is one of the keys to achieving a favourable
detection performance in such challenging scenarios. Identifi-
cation of samples to evaluate these test statistics, however, is
complicated by the unknown object trajectory resulting from
the manoeuvres. The fluctuations in the effective reflectivity
of the object further exacerbate the aforementioned signal
processing challenges.

In this work, we propose a solution which estimates the
unknowns of the problem using a Bernoulli state space model;
the target position, velocity and the probability of existence
variables over a coherent processing interval (CPI) [4] are
captured by a Bernoulli random finite set (RFS) variable [5],
[6]. The state evolution over the desired integration time-
window is thus modelled by a finite collection of these
variables yielding a Markov chain. This model is equipped
with complex radar data cube observations which are formed
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by using matched filtering and sampling at the receiver array
front-end while illuminating the region of interest with pulse
trains. We leverage on the fact that these tensor valued mea-
surements (see, e.g. [7]) provide accurate maximum likelihood
(ML) estimates of the complex valued reflectivities given their
position and velocity [8].

The processing scheme we propose is an approximate infer-
ence scheme for Bayesian detection on the above mentioned
model; Expectation Maximisation (EM) iterations find com-
plex valued reflectivities within the integration time-interval
for which sequential Monte Carlo (SMC) Bernoulli filtering
provides the state probability density underlying the expec-
tation. The likelihood evaluations involve complex valued
radar ambiguity function evaluations at the state particles
leading to coherent and adaptive processing by simultaneously
digital beam-forming towards the object location and Doppler
matching.

This approach can be viewed as track-before-detect [9] as
signals are filtered with Bayesian recursions and not detec-
tions. State models that accommodate existence variables [5],
i.e. Bernoulli state-space models [6], facilitate Bayesian detec-
tion. However, previous work in the literature builds upon non-
coherent measurements (e.g. [10]) including Swerling likeli-
hood models (see, e.g. [11]–[13]). Coherent processing for
detection of manoeuvring targets, on the other hand, is often
considered from a match filter design perspective (e.g. [14]–
[16]) which results in combinatorial growth in the number
of filters with the integration time. We use track-before-
detect to circumvent this complexity in coherent long time
integration using adaptive processing facilitated by Bayesian
sequential inference [8]. We used this approach previously to
evaluate likelihood ratio tests [17], [18] whereas this work is
on Bayesian detection.

This letter is organised as follows: Section II gives the
mathematical problem statement. The model underlying the
proposed solution is introduced in Section III. Section IV
details the proposed approximate solution and Section V
demonstrates its efficacy. Finally, we conclude in Section VI.

II. PROBLEM STATEMENT: BAYESIAN DETECTION WITH
LONG TIME INTEGRATION

Let us consider the scenario in Fig. 1. A radar transmitter
located at the centre of the coordinate frame illuminates a
region of interest (RoI). The carrier has a wavelength of λc m
modulated by a train of N pulses ũ of duration Tp and pulse
repetition interval (PRI) of T . The emitted signal is given by
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Fig. 1: A radar transmitter (triangle), receiver array (orange
dots) and a reflector at rx, ysT moving with velocity r 9x, 9ysT .

uptq “ Re
!

N´1
ÿ

n“0

ũpt ´ nT qejωct
)

, (1)

where Ret¨u denotes the real part of its complex argument.
We consider an array receiver with L elements spaced

by half the carrier wavelength. Each pulse induces a noisy
superposition of reflections from objects in the RoI (e.g., the
reflector at rx, ysT in Fig. 1) and the background. The receiver
front-end signal is demodulated, matched filtered with the
probing waveform ũ, and then sampled to obtain in-phase
and quadrature-phase samples [19], without loss of generality.
Associated with each pulse in the train, we denote by Γ
the number of samples output by this processing chain. All
samples from the L elements are often stacked as a “radar data
cube” with the axis labelled as the array index (or the phase
centre), pulse index (slow time) and range index (fast time) [4,
Chp.3]. This acquisition scheme is illustrated in Fig. 2.

Let us stack the columns of the rth range bin slice in Fig. 2
to form a LN ˆ 1 data vector. This vector zprq is a function
of the kinematic state x fi rx, y, 9x, 9ysT which consists of the
location rx, ysT and velocity r 9x, 9ysT with T denoting vector
transpose. Analytic models commonly used in radar signal
processing suggest that this relation takes the form

zprq “

#

nprq, nuisance only,
α spr,xq ` nprq, otherwise,

(2)

where s is the received reflection model that will be detailed
later in this section, and α is a complex number modelling the
effective reflectivity (or, the reflection coefficient) assumed to
remain constant during the collection of the data cube. Such
time-intervals in which the effective reflectivity remains con-
stant is referred to as a coherent processing interval (CPI) [4].
Thus, data cubes are collected in a CPI.

In (2), nprq is a circularly symmetric complex Gaus-
sian random vector with zero mean and covariance Σ, i.e.,
nprq „ CN p.;0,Σq. This term captures all nuisance terms
such as reflections from the background and thermal noise.
The reflected signal model is

spr,xq fi Λ
`

rTs ´ τpxq,Ωpxq
˘

ˆss
`

θpxq
˘

b st
`

τpxq,Ωpxq
˘

(3)

sspθq “

”

1, e´jπ sin θ, . . . , e´jpL´1qπ sin θ
ıT

, (4)

st pτ,Ωq fi e´j2πfcτ ˆ

”

1, ejΩ, . . . , ejpN´1qΩ
ıT

, (5)

where θpxq “ tan´1py, xq, τpxq “ 2
a

x2 ` y2q{c, and
Ωpxq “ 2πT {λcp 9x cospθpxqq ` 9y sinpθpxqqq are the angle of
arrival, the time-of-flight (TOF), and the angular Doppler shift,
respectively, associated with x (Fig. 1). Here, c « 3.0e8 m/s
is the speed of light, ss is the spatial steering vector, st is the
temporal steering vector, and b denotes the Kronecker product

Fig. 2: Data acquisition at the receiver front-end: Demodula-
tion, matched filtering, sampling and shift-registers.

operator. Λp¨q is the ambiguity function [20, Chp. 20] for the
waveform ũ.

Detection via long time integration refers to taking several
radar data cubes (or scans) into account before deciding on
the existence of a reflector. For example, use of K data cubes
corresponds to integration of the reflected energy over KˆNT
seconds. Let us denote this data by z1:K . Existence events
in K steps render length K Bernoulli sequences that take
values from T fi t0, 1uK . Let us denote by H0 Ă T the null
hypothesis. One possible selection would contain only the all
zero sequence H0 “ tτu where τ “ 0 is of size K ˆ 1. Thus,
detection events constitute H1 “ T zH0. The Bayesian test for
long time integration becomes

lpz1:K |H1q

lpz1:K |H0q

H1

ż
H0

P pH0q

P pH1q
, (6)

which is equivalent to

P pH1|z1:Kq
H1

ż
H0

1{2, (7)

P pH1|z1:Kq “
ÿ

τPH1

ppτ |z1:Kq. (8)

The computation of the decision statistics (8) entails chal-
lenges as the events in H1 have additional unknowns: The
reflectivities in the signal model in (2) over K CPIs, i.e.,
α1:K , and the state trajectory X1:K are unknown. The rest
of the article addresses these challenges in evaluating (8).

III. BERNOULLI MARKOV MODEL WITH THE RADAR DATA
CUBES

We use a Bernoulli RFS model to capture the uncertainties
regarding the reflector’s kinematics, i.e., X1:K , and its exis-
tence. A Bernoulli random set X generates either a singleton
value or an empty set; i.e. X “ txu with probability ζ and
X “ H with probability 1 ´ ζ. Here x „ pp.q is a sample
from a state distribution with density pp.q.

The state evolution is assumed to have a first-order Markov
structure and equivalently the joint probability density function
of K Bernoulli variables X1:K factorises as

ppX1:Kq “ ppX1q

K
ź

k“2

ppXk|Xk´1q, (9)

where [6]

ppXk|Xk´1q “

$

’

’

’

’

&

’

’

’

’

%

p1 ´ Pbq, Xk “ H, Xk´1 “ H

Pbπbpxq, Xk “ txu, Xk´1 “ H

p1 ´ Psq, Xk “ H, Xk´1 “ tx1u

Psπpx|x1q, Xk “ txu, Xk´1 “ tx1u

.(10)
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Here, ppX1q acts as the primary degree of freedom in selecting
the chain’s density. In the Markov transition, Pb is the prob-
ability of entry of a reflector into the support of the density
πbpxq which in this work is selected as a uniform density over
a bounded region B in the state space signifying the region
under test, i.e., πbpxq “ UBpxq where U is the uniform density
over B. Ps models the probability that given an object with
state x1 stays in B in the next step with a state transition
density given by

πpx|x1q “ N px;F p∆qx1, Qp∆, σ2qq, (11)

where F is a matrix that models constant velocity motion
during time interval ∆, and Q is the process noise covariance
specifying the strength of deviations via σ2 [6].

As a result, the number of elements of Xk, k “ 1, ¨ ¨ ¨ ,K
generate τ introduced in Section II as a sample from a Markov
process with the transition matrix

Π “

”

p1´Pbq Pb

p1´Psq Ps

ı

,

i.e., given X1:K „ X1:K , τ “
“

|X1| , ¨ ¨ ¨ , |XK |
‰

where |.|
denotes set cardinality. This chain is illustrated in Fig. 3.

The Markov model in Fig. 3 asserts the assumption that
measurement uncertainties in different time steps are (mutu-
ally) independent conditioned on the state variables. The latter
are related to the radar measurements through likelihoods that
stem from the measurement model in (2) given by

lpzkprq|Xkq “

#

lpzkprq|txku, αkq, Xk “ txku,

lpzkprq|τk “ 0q, Xk “ H,
(12)

lpzkprq|txku, αkq “ CN pzkprq;αk spr,xkq,Σq (13)
lpzkprq|τk “ 0q “ CN pzkprq;0,Σq. (14)

These terms aggregate to the data cube likelihood given by

lpzk|Xkq “
ź

rPEpXkq

lpzkprq|Xkq
ź

r1PĒpXkq

ppzkpr1qq, (15)

where E is a set of samples (or range bins) associated with
Xk by EpXkq “ tr|τpxkq ď rTp ě τpxkq ` Tpu. In (15),
ĒpXkq fi t1, 2, ¨ ¨ ¨ ,ΓuzEpXkq is the complement of E .

Thus, the joint density of the Markov dynamic model in
Fig. 3 conditioned on α1:K is found by substituting from
the above specified densities (9)–(11) and likelihoods (12)–
(15) in ppX1:K , z1:K |α1:Kq “ ppX1:Kq

śK
k“1 lpzk|Xk, αkq.

Consequently, the data posterior ppX1:K |z1:K , α1:Kq can be
decomposed into the aforementioned modelling densities as
well as the decision statistics in (8):

ppτ |z1:Kq “

ż

1τ pX1:KqppX1:K |z1:K , α1:Kq

ˆ ppα1:K |z1:Kqdα1:KδX1:K , (16)

Fig. 3: Dynamic system model: Bernoulli Markov model with
radar data cube measurements over K CPIs.

1τ pX1:Kq “

#

1, |Xk| “ τk, k “ 1, ...,K

0, otherwise,

where 1 is the indicator function, the first density inside
the integral is the Bernoulli trajectory posterior, the second
density is the posterior of the reflection coefficients, and the
integrations above are set integrals given by

ş

fpXqδX “

fpHq `
ş

fptxuqdx, for Bernoulli variables.
As a result, (16) gives an explicit formula for the decision

statistics in (8) using the Bernoulli Markov model detailed in
this section.

IV. APPROXIMATE INFERENCE IN THE LONG TIME
INTEGRATION MODEL

Evaluation of (16) is not a straightforward computational
task for both the dimensionality of the variables, the com-
plexity of the densities and the geometry of the integration
domain as determined by the indicator function involved.
We propose an approximate scheme which considers first a
relaxation of (16) given by

qpτ |z1:Kq fi

ż

`

K
ź

k“1

δτk,|Xk|

˘

K
ź

k1“1

ppXk1 , αk1 |z1:Kqdα1:KδX1:K

“

ż K
ź

k“1

δτk,|Xk| ppXk|z1:K , αkqqpαk|z1:Kqdα1:KδX1:K

where δi,j is Dirac’s Delta function. Here, the joint density
in (16) is approximated by the product of marginals, which is
widely used in variational Bayesian inference, e.g. in mean-
field approximations [21]. The Bernoulli state marginals con-
ditioned on reflectivities can be found by Bernoulli smoothing
on the model introduced in Section III. Computation of a
reflectivity posterior is not straightforward, however. Let us
denote the marginal existence probabilities in the above joint
density by ζk, i.e. ζk fi 1 ´ ppXk “ H|z1:kq. Then,

qpτ |z1:Kq “
ź

k“1:K

p1 ´ ζkq1´τkζτkk . (17)

In this work, we propose to use SMC Bernoulli forward
filtering and EM to find ML estimates of reflectivities in
filtering steps for approximate computation of the existence
probability term ζk above.

A. SMC Bernoulli track-before-detect

Bernoulli filtering on the Markov model of Section III
estimates the (marginal) probability of Xk taking empty set
value 1´ζk|k given data cubes up to time z1:k and reflectivity
estimates α̂1:k sequentially, for k “ 1, . . . ,K. Estimation of
α̂ks using expectation maximisation is detailed in the next
subsection. Suppose for now that we are given α1:K .

The first prediction stage at k “ 1, selects the existence
probability as ζ1|0 Ð Pb{p1 ´ Ps ` Pbq which is the limiting
probability of (12) for X1|0 ‰ H. As samples generated from
πb “ UB, we use a regular grid of P points over B (Section III)
denoted by tx

ppq

1|0uPp“1. Thus, the particle set output is P1|0 fi

tx
ppq

1|0, ω
ppq

1|0 Ð 1{P uPp“1.
Let us consider prediction for k ą 1, denote weighted

samples from the previous posterior by and the existence
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probability by ζ̂k´1. The spatial predictive density based on
this set is found by using the Markov transition in (10) in
the Chapman-Kolmogorov equation [6] and generating a new
particle set

Pk|k´1 fi

!

x
ppq

k|k´1, ω
ppq

k|k´1

)P

p“1
. (18)

For the case, the predicted existence probability is [6]

ζk|k´1 “ Pbp1 ´ ζ̂k´1q ` Psζ̂k´1. (19)

The update at k first finds the particles from the spatial
posterior denoted by Pk fi tx

ppq

k , ω
ppq

k uPp“1 where

x
ppq

k Ð x
ppq

k|k´1, ω
ppq

k “
ω̃

ppq

k
řP

p1“1 ω̃
pp1q

k

, (20)

ω̃
ppq

k fi Lpzk|Xk “ tx
ppq

k|k´1u, αkq ω
ppq

k|k´1, (21)

Lpzk|Xk “ tx
ppq

k|k´1u, αkq fi
ź

rPE

lpzkprq|tx
ppq

k|k´1u, αkq

lpzkprq|τk “ 0q
.(22)

Here, E is the set of all samples associated with at least one
particle and the likelihoods are given in (12)–(15).

The SMC estimator for the existence probability ζk in the
test statistics (17) is thus estimated by [6]

ζ̂k “
ζk|k´1

řP
p“1 ω̃

ppq

k|k

p1 ´ ζk|k´1q ` ζk|k´1

řP
p“1 ω̃

ppq

k|k

. (23)

The effective number of particles Neff in Pk is estimated
by using (51) in [22] and compared to a pre-defined threshold
of Teff to resample Pk when Neff ă Teff . The spatial state
of the object is estimated using the empirical weighted average
of Pk, i.e., x̂k “

řP
p“1 ω

ppq

k x
ppq

k .

B. ML estimation of reflection coefficients
We consider the sequence of ML reflectivity estimation

problems for k “ 1, . . . ,K

α
piq
k “ argmax

αk

S̃pαk, α
pi´1q

k q, (24)

using EM iterations for i “ 1, 2, . . . which, for the Bernoulli
model in Section III, yields

S̃pαk, α
pi´1q

k q 9

ż

Lpzk|Xk “ tx
ppq

k|k´1u, αkq

ˆ logLpzk|Xk “ txku, αkqppxk|Z1:k´1, α̂1:k´1qdxk. (25)

The prediction density in S̃ in the kth problem is condi-
tioned on the estimates of the reflectivities up to time k, i.e.,
α̂1:k´1. The maximiser of the Monte Carlo approximation to
the expectation in (25) using Pk|k´1 in (18) is found using [8]

α
piq
k “

ˆ P
ÿ

p“1

ÿ

rPEpx
ppq

k|k´1
q

ξ
pp,i´1q

k spr,x
ppq

k|k´1q
H
Σ´1spr,x

ppq

k|k´1q

˙´1

ˆ

ˆ P
ÿ

p“1

ÿ

rPEpx
ppq

k|k´1
q

ξ
pp,i´1q

k spr,x
ppq

k|k´1q
H
Σ´1zkprq

˙

, (26)

ξ
pp,i´1q

k fi ω
ppq

k|k´1 ˆ Lpzk|Xk “ txp
k|k´1u, α

pi´1q

k q (27)

Fig. 4: Detection posteriors vs integration time: average, ˘3
standard deviation and max/min posterior curves over 100
Monte Carlo experiments given one target and no target.

where the likelihood ratio in (27) is given in (22), s is the
reflected signal in (3), and Σ is the noise covariance in (14).

The ML estimator for i “ 1, 2, . . . in (26) finds projections
of radar data cubes on the signal model in (3). This inner prod-
uct operation on the second line of (26) diverts beams towards
the (reflector) positions of x

ppq

k|k´1s, and matches the Doppler
frequencies corresponding to the velocities. Consequently, any
interference from surrounding objects will be filtered out. This
estimator becomes more accurate as more array elements and
pulses are used (see, [8, Chp. 3]).

V. EXAMPLE

We demonstrate the proposed Bayesian coherent long-time
integration algorithm (Sec. IV) in detection of a target initially
located at rx, ysT “ r10000, 10000sT m and moving towards
west with 120 m/s. A mono-static radar is located at the centre
(Fig. 1). N “ 250 chirp pulses of 1 µs duration and 10 MHz
bandwidth are simulated with a PRI of T “ 100 µs in (1).

The array aperture size is L “ 128 and the baseband
sampling rate is 24 MHz yielding 25 samples per pulse at
each element. The noise covariance is Σ “ σ2

nI where I is
the NL ˆ NL identity matrix. The reflectivity for each CPI
is sampled from a zero mean complex Gaussian with unit
variance. The per pulse signal-to-noise ratio (SNR) is thus
1{σ2

n and the integration SNR is N{σ2
n.

We use 100 Monte Carlo runs for very low SNRs of
0 and´6 dB to demonstrate the proposed Bayesian detector;
we use birth and survival probabilities of Pb “ 0.01 and
Ps “ 0.9, respectively, with P “ 104 particles initiated as
a grid over the 250ˆ250 m2 cell-under-the-test centred at the
initial target location and also over the velocity dimensions.
Integration time lengths of K “ 1, . . . , 15 are used; H0 is the
set of binary sequences with t

?
K ` 1u elements out of K

being zero. Fig. 4 depicts the resulting detection posteriors
(i.e. (23) in (17) and (8)) for when the target existence
hypothesis H1 and the null hypothesis H0 is true. Increasing
integration time improves the empirical detection probability
(i.e. the blue region above the 0.5 threshold) and the false
alarm rate (i.e. the orange region below 0.5 ).

VI. CONCLUSION
In this work, we proposed a Bayesian detector capable

of performing long-time integration using track-before-detect.
This approach provides an adaptive and computationally fea-
sible alternative for long-time integration and the detection of
low SNR and manoeuvring objects.
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