

IEEE ICASSP 2023 Paper ID: 3191 Session: SLT-P26 Type: Poster Date: Wed., June 7 Time: 15:35 ~ 17:05

NNSVS: A Neural Network-Based Singing Voice Synthesis Toolkit

https://github.com/nnsvs/nnsvs/

Ryuichi Yamamoto^{1,2}, Reo Yoneyama², Tomoki Toda² ¹ LINE Corp., Japan. ² Nagoya University, Japan.

Samples

What is NNSVS?

Neural-Network-based Singing Voice Synthesis toolkit for research

Features

- Everything is open-source
- Complete recipes for reproducible research [Watanabe+2018]
- High naturalness

Why we need a new toolkit for SVS?

Sinsy (2002 ~ current) [Hono+2021]

- Limited functionality
 - Public version still relies on the traditional parametric method based on HMMs
 - New DNN version is not publicly available
- Open-source version is outdated
 - Last public release was at December, 2015.

Muskits (2021 ~ current) [Shi+2022]

- Towards end-to-end systems
- It does not support parametric models such as Sinsy

- Score/acoustic features are used as intermediate features
- Each module can be flexibly configured by design

- Score/acoustic features are used as intermediate features
- Each module can be flexibly configured by design

- Score/acoustic features are used as intermediate features
- Each module can be flexibly configured by design

- Score/acoustic features are used as intermediate features
- Each module can be flexibly configured by design

Highlights

Design

- Modular
- Language-independent

Models

- Multi-stream acoustic model
- Autoregressive(AR) F0 models
- Source-filter neural vocoders (hn-uSFGAN) [Yoneyama+2022]

Highlights

Design

- Modular
- Language-independent

Models

- Multi-stream acoustic model
- Autoregressive(AR) F0 models
- Source-filter neural vocoders (hn-uSFGAN) [Yoneyama+2022]

Experimental conditions

Database

- Namine Ritsu
- 110 songs, 4.35 hours (silence excluded)

Acoustic features

- Mel-spectrogram (MEL): 80-dim
- WORLD-features: [MGC, LF0, VUV, BAP] that consists of 67-dim ([60, 1, 1, 3]) features

Baseline systems

System	Acoustic features	Multi-stream Architecture	Autoregressive Streams	Vocoder
Sinsy	MGC, LF0, VUV, BAP	No	-	hn-uSFGAN
Sinsy w/ pitch correction	MGC, LF0, VUV, BAP	No	-	hn-uSFGAN
Sinsy w/ vibrato modeling	MGC, LF0, VUV, BAP, VIB	No	-	hn-uSFGAN
Muskits RNN [1]	MEL	No		HiFi-GAN
DiffSinger [2]	MEL,LF0,VUV	Yes	-	hn-HiFi-GAN

Naturalness MOS test results for baseline systems

Naturalness MOS

Sinsy with vibrato modeling performed best among three Sinsy systems

→ Demonstrated the importance of F0 modeling

Our reproduction of Sinsy performed comparable to → Parametric SVS can still achieve good results

Naturalness MOS test results for baseline systems

Naturalness MOS

Sinsy with vibrato modeling performed best among three Sinsy systems

→ Demonstrated the importance of F0 modeling

Our reproduction of Sinsy performed comparable to → Parametric SVS can still achieve good results

Naturalness MOS test results for baseline systems

Naturalness MOS

Sinsy with vibrato modeling performed best among three Sinsy systems

→ Demonstrated the importance of F0 modeling

Our reproduction of Sinsy performed comparable to → Parametric SVS can still achieve good results

NNSVS systems

Acoustic features

- Mel-spectrogram (MEL): 80-dim
- WORLD-features: [MGC, LF0, VUV, BAP] that consists of 67-dim ([60, 1, 1, 3]) features

NNSVS systems

System	Acoustic features	Multi-stream Architecture	Autoregressive Streams	Vocoder
NNSVS-Mel v1	MEL, LF0, VUV	Yes	-	hn-uSFGAN
NNSVS-Mel v2	MEL, LF0, VUV	Yes	LF0	hn-uSFGAN
NNSVS-Mel v3	MEL, LF0, VUV	Yes	Mel, LF0	hn-uSFGAN
NNSVS-WORLD v1	MGC, LF0, VUV, BAP	Yes	-	hn-uSFGAN
NNSVS-WORLD v2	MGC, LF0, VUV, BAP	Yes	LF0	hn-uSFGAN
NNSVS-WORLD v3	MGC, LF0, VUV, BAP	Yes	MGC, LF0	hn-uSFGAN
NNSVS-WORLD v4	MGC, LF0, VUV, BAP	Yes	MGC,LF0, BAP	hn-uSFGAN

Naturalness MOS test results for NNSVS systems (1/2)

Naturalness MOS

• AR F0 > Non-AR F0

٠

AR model for mel-spectrogram didn't work well possible due to exposure bias issues

Naturalness MOS test results for NNSVS systems (2/2)

Naturalness MOS

Conclusions

NNSVS: neural network-based singing voice synthesis toolkit

New features are available at GitHub

- Diffusion-based acoustic model
- SiFi-GAN [Yoneyama+2023]
- Mandarin SVS recipes using Opencpop [Yu+2022]

Samples