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Background and Motivation

• Massive random access is a main challenge in massive machine-type
communication (mMTC).

• A large number of devices with sporadic activities are connected to
the multi-cell network.

• Active devices transmit their unique preassigned non-orthogonal sig-
nature sequences to the base-stations (BSs).

• The network identifies the active devices by detecting which sequences
are transmitted based on the received signals.

• Covariance-based approach: formulate the detection problem as a
maximum likelihood estimation (MLE) problem in the single-cell
[1, 2, 3] and multi-cell [4] scenarios respectively.

• The scaling law of the covariance-based activity detection in the single-
cell scenario has been thoroughly analyzed in [2, 3].

Main Contribution
• Characterize the scaling law of the covariance-based approach in the
multi-cell massive MIMO system.

• Characterize the distribution of the estimation error.

System Model

• A multi-cell system consists of B cells, each of which contains

– one base station (BS) equipped with M antennas;

– N single-antenna devices, K of which are active during any co-
herence interval.

• Each device n in cell j is preassigned a unique signature sequence
sjn ∈ CL with L being the sequence length.

• Let ajn be a binary variable with ajn = 1 for active and ajn = 0 for
inactive devices.

• The channel between device n in cell j and BS b is denoted as√
gbjnhbjn, where
– gbjn ≥ 0 is the large-scale fading coefficient depending on path-
loss and shadowing;

– hbjn ∈ CM is the Rayleigh fading coefficient following CN (0, I).

• The additive Gaussian noise Wb ∈ CL×M follows CN (0, σ2
wI).

• Notations:

– Sj = [sj1, . . . , sjN ] ∈ CL×N , and S = [S1, . . . ,SB] ∈ CL×BN ;

– Aj = diag(aj1, . . . , ajN) ∈ RN×N , A = diag(A1, . . . ,AB) ∈
RBN×BN , and a ∈ RBN denotes the diagonal entries of A;

– Gbj = diag(gbj1, . . . , gbjN) ∈ RN×N , and Gb =
diag(Gb1, . . . ,GbB) ∈ RBN×BN ;

– Hbj = [hbj1, . . . ,hbjN ]
T ∈ CN×M .

System Model (Cont.)

• The received signal Yb ∈ CL×M at BS b can be expressed as
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• The covariance matrix Σb of Yb is given by

Σb =
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[
YbY

H
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]
= SGbASH + σ2

wI. (2)

• The MLE problem can be formulated as [4]

minimize
a

B∑
b=1

(
log |Σb|+ tr

(
Σ−1

b Σ̂b

))
(3a)

subject to abn ∈ [0, 1], ∀ b, n. (3b)

• The sample covariance matrix Σ̂b = YbY
H
b /M is computed by aver-

aging over different antennas.

• We are interested in answering the following two theoretical questions:

– given the system parameters L,B, and N, how many active de-
vices can be correctly detected via solving the MLE problem (3)
as M → ∞?

– what is the asymptotic distribution of the MLE error?

Consistency of MLE [4]

Lemma 1. Consider the MLE problem (3) with given S, {Gb}, and σ2
w.

Define

S̃ ≜ [s∗11 ⊗ s11, . . . , s
∗
BN ⊗ sBN ] ∈ CL2×BN , (4)

where (·)∗ is the conjugate operation and ⊗ is the Kronecker product.
Let â(M) be the solution to (3) when the number of antennasM is given,
and let a◦ be the true activity indicator vector. Define I ≜ {i | a◦i = 0},

N ≜ {x ∈ RBN | S̃Gbx = 0, ∀ b}, (5)

C ≜ {x ∈ RBN | xi ≥ 0 if i ∈ I, xi ≤ 0 if i /∈ I}, (6)

then a necessary and sufficient condition for â(M) → a◦ as M → ∞ is
that the intersection of N and C is the zero vector, i.e., N ∩ C = {0}.

• The signature sequence matrix and the large-scale fading coefficients
play vital roles in the scaling law analysis (due to Eq. (5)).

Main Results

• The assumptions and main results:

Assumption 1. The columns of the signature sequence matrix S are
uniformly drawn from the sphere of radius

√
L in an i.i.d. fashion.

Assumption 2. The multi-cell system consists of B hexagonal cells with
radius R. In this system, the large-scale fading components decrease
exponentially with distance [5], i.e.,

gbjn = P0

(
d0
dbjn

)γ

, (7)

where P0 is the received power at the point with distance d0 from the
transmitting antenna, dbjn is the BS-device distance between device n
in cell j and BS b, and γ is the path-loss exponent.

• Scaling law of the MLE problem (3):

Theorem 1. Under Assumption 1 and Assumption 2 with γ > 2,
then there exist constants c1, c2 > 0 independent of system param-
eters K,L,N, and B, such that if

K ≤ c1L
2/ log2(eBN/L2), (8)

then the condition N ∩ C = {0} in Lemma 1 holds with probability
at least 1− exp(−c2L).

– The maximum number of active devices that can be correctly detected
by solving the MLE problem (3) is in the order of L2 shown in (8);

– The inter-cell interference is not a limiting factor of the detection
performance because B affects K only through logB;

– Scaling law in (8) in the multi-cell scenario is approximately the same
as the single-cell scenario [2, 3].

• A summary of phase transition and scaling law results on covariance-
based activity detection:

Single-Cell Scenario Multi-Cell Scenario

Phase Transition Theorem 2 in [3] Theorem 3 in [4]

Scaling Law Theorem 9 in [3] Theorem 1

• Distribution of estimation error (see [6] for more details):

Theorem 2. Define a random vector µ̂ whose distribution depends
only on S, {Gb}, σ2

w, and a◦, then
√
M

(
â(M) − a◦) converges in

distribution to µ̂ as M → ∞.

Main Results (Cont.)

– The estimation error â(M) − a◦ can be approximated by 1√
M
µ̂ for a

sufficiently large M ;

– We can numerically compute the error distribution by Theorem 2.

Simulation Results

• The channel path-loss is modeled as 128.1 + 37.6 log10(d) as in As-
sumption 2, where d is in km.

• All signature sequences are uniformly drawn from the sphere as in
Assumption 1.
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Left: Scaling law of covariance-based activity detection when N = 200;

Right: Comparison of the simulated results and the analysis in terms of PM and PF

when B = 7, N = 200,K = 20, L = 20.

Left Figure:

– The curves with different B’s overlap with each other, implying that
the scaling law is almost independent of B.

– K is approximately proportional to L2, which verifies Eq. (8).

Right Figure:

– The curves obtained from Theorem 2 match well with those obtained
from the active set CD algorithm.

References

[1] S. Haghighatshoar, P. Jung, and G. Caire, ”Improved scaling law for activity detection in massive
MIMO systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp.
381–385.

[2] A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Non-bayesian activity detection, large-
scale fading coefficient estimation, and unsourced random access with a massive MIMO re-
ceiver,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2925–2951, May 2021.

[3] Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, “Phase transition analysis for covariance-based
massive random access with massive MIMO,” IEEE Trans. Inf. Theory, vol. 68, no. 3, pp.
1696–1715, Mar. 2022.

[4] Z. Chen, F. Sohrabi, and W. Yu,“Sparse activity detection in multi-cell massive MIMO exploiting
channel large-scale fading,” IEEE Trans. Signal Process., vol. 69, pp. 3768–3781, Jun. 2021.

[5] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, 2002.

[6] Z. Wang, Y.-F. Liu, Z. Wang, and W. Yu, “Scaling law analysis for covariance based activity
detection in cooperative multi-cell massive MIMO,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Rhodes, Greece, Jun. 2023.


