The Robust Binaural Sound Localisation With Temporal Attention
niversl

Of ’ Q1 Hu, Ning Ma and Guy J. Brown

Sheffield.

g-hu@mail.ioa.ac.cn, {n.ma, g.j.brown}@sheffield.ac.uk

INTRODUCTION RESULTS

Narrow-band antenna signal processing derived methods, being sensitive to noise and reverberations:
e GCC-PHAT (Generalized Cross Correlation with Phase Transform)

Table 1: Localisation RMSE results (Lower is better) in degree for different models in noisy and reverberant condi-
tions. Average is computed across rooms and SNRs.
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Table 2: Localisation Accuracy (%, Higher is better) for different models in noisy and reverberant conditions. Av-
erage is computed across rooms and SNRs.
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. CNN-BLOCK (m*m, K) |

Linear (16, 1) + sigmoid e Shallow:The integration of frame-level output probabilities of the localisation system as a
weighted sum according to a normalised oracle temporal mask
TAttn—E: Making use of temporal masks estimated by the pre-finetuned TME on the training set

e TAttn—J: A joint optimisation network where the TME and the azimuth estimation network are
jointly trained using the multi-task learning loss function

 TAttn—O: Using normalised oracle temporal masks in the attention layer to combine deep features

based on frame-level Energy
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Figure 1: The framework of the proposed phase-based system using temporal attention for binaural sound locali-
sation. ‘L’ and ‘R’ represent speech spectrum of left and right ears respectively. The phase-based localisation uses
a convolutional neural network (CNN) framework for binaural sound localisation in noisy and reverberant con-
ditions by incorporating outputs of a temporal mask estimation (TME) module, which indicate speech dominance
within each frame. The TME is trained using oracle masks as targets and noisy speech as input features.
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e Extending the system to employ spectro-
temporal attention, which would be useful
particularly for narrow-band intrusions

 Exploring a more integrated approach to
mask estimation and sound localisation

Figure 2: The architecture of CNN using phase spectrum for binaural sound azimuth localisation. ‘L’ and ‘R’ denote
the left and right channels respectively. The system for binaural sound source localisation is a CNN system with
three stages. The first stage extracts suitable features for sound localisation by using four convolutional layers. The
extracted frame-level features are then combined using a “TAttn layer’ to obtain utterance-level features. The com-
bined features are passed to the final stage which uses three fully connected layers to perform azimuth estimation
as a classification task.




