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@ Noise and reverberation

@ Objective: estimating the DOA of the target sound source.
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@ Narrow-band antenna signal processing derived methods, being
sensitive to noise and reverberations.
o GCC-PHAT (Generalized Cross Correlation with Phase Transform)
o SRP (Steered Response Power)
o Subspace-based Methods
@ Deep Neural Network (DNN) based methods, where the front- and
back-end processes are decoupled.
o Spatial Feature Enhancement
o Spatial Feature Selection using Target Related T-F Masks
o Robust Improvements on Back-end Localisation Models via
Multi-conditional Training (MCT) or Headmovements
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@ Denoting the left and right channels by 'L’ and 'R’, respectively.
@ Using four convolutional layers to extract IPD-like features for sound
localisation.
o Estimating the azimuth using a classifier.
o Integrating the frame-level output probabilities of the azimuth

estimates through averaging or temporal attention.

S. Chakrabarty et al., Multi-Speaker DOA Estimation Using Deep Convolutional Networks
Trained with Noise Signals. IEEE Journal Of Selected Topics in Signal Processing, 2019.
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@ Being similar to the baseline.

@ Using a ‘TAttn layer’ to obtain utterance-level features by combining
learned features.

@ Regarding the azimuth estimation as a classification task.
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o Estimating the speech dominance within each frame by using a
temporal mask estimation (TME) module.

@ Training the TME module in a supervised way by using oracle masks
as targets and noisy speech as inputs.

o Using Multi-tasking learning to encourage the TME to output an
optimal mask for the source localisation task.
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Dataset

o Evaluation for a single (speech) source only.

@ Monaural speech from the TIMIT, and Binaural signals were created
using HRIRs.

@ 37 azimuths, across the full 180° azimuth range in steps of 5°.

@ 30 random sentences for each of the 37 azimuth locations for creating
the training and test sets, respectively.

@ For Training, the KEMAR anechoic HRIRs were used to simulate the
free field condition; For testing, the Surrey reverberant HRIRs were
adpoted.

o randomly selected signal-to-noise ratios (SNRs) within [0,20] dB for
training, fixed SNRs (i.e., 0, 5, 10, and 20 dB) for testing.
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Table: Localisation RMSE results (Lower is better) in degree

SNR (dB)

Room A

Room B

Room C

Room D

20 10 5 0

20 10 5 0

20 10 5 O

20 10 5 O

Avg.

GCC-PHAT
+ MCT

4.9 36.1 56.3 60.1
20 59 7.0 9.2

15.4 45.7 55.7 57.7
16 54 8.7 133

10.8 40.5 55.4 60.4
32 59 71203

15.8 45.0 57.9 64.3
26 51 63133

42.6
7.3

Shallow

33 6.1 82136

27 46 74 16.1

29 49 72199

3.3 54 8.019.6

8.3

TAttn-E
TAttn—J
TAttn-O

1.6 1.8 55153
1.6 1.8 29 7.9
16 18 25 13.0

1.0 52 4.8 152
1.1 1.6 5.1 12.7
1.0 1.4 3.2 109

22 22 32 9.0
21 21 29118
22 22 27 6.0

1.8 2.1 5119.0
19 2.1 3.8 9.0
1.8 2.0 28133

59
4.4
4.3

Table: Localisation Accuracy (%, Higher is b

etter)

Room A

Room B

Room C

Room D

SNR (dB)

20 10 5 0

20 10 5 0

20 10 5 0

20 10 5 0

GCC-PHAT
+ MCT

99.4 74.3 41.1 20.6
99.8 97.8 93.6 85.3

96.3 59.4 32.7 19.0
99.5 95.7 92.8 83.3

97.2 62.9 342 17.9
99.8 97.8 92.2 80.9

96.0 64.5 35.6
99.6 94.9 915

19.9
81.6

54.4
92.9

Shallow

99.7 96.9 90.8 80.4

99.8 96.0 90.3 78.6

99.9 98.3 94.2 75.3

99.8 97.6 90.7 72.1

91.3

TAttn-E
TAttn—J
TAttn-0O

100 99.8 97.9 86.4
100 100 98.6 89.3
100 99.9 98.9 91.3

100 99.8 96.5 82.4
100 99.9 97.7 88.7
100 99.9 98.0 88.7

100 99.5 97.8 83.2
100 99.7 97.9 90.7
100 99.8 98.5 90.6

100 99.5 97.7 78.0
100 99.6 98.4 90.4
100 99.6 98.7 87.0

94.9
96.9
96.9
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@ A novel binaural machine hearing system with temporal attention is
proposed for robust sound localisation.

@ The temporal attention layer integrates frame-level deep features
within the localisation DNN by incorporating outputs of an TME
module.

o Multi-task learning is adopted to jointly optimise the localisation and
the TME module, which improves the system performance, especially
in challenging scenarios.
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Thanks for your attention!
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